Introduction to Science and the Chemistry of Life

I Nature of Science

- 1.Forms
 - a) Pure Science study for the pure gain of knowledge
 - b) Applied Science directed study to solve a known problem.
- 2. Procedures of Science the Scientific Method
 - a) Observation measurable, unbiased observations
 - b) Hypothesis cause and effect or Null
 - c) Experimentation use of control, sufficient numbers, unbiased analysis
 - d) Theory a working explaination of cause and effect with predictive value.
 - e) Law a proven theory in all measurable situations.

3. Limitations of Science

- a) Scientific Domain must be able to apply the Scientific Method to the area
- b) Aims of Science "to make and use theories"
- 4. Divisions of Biological Sciences
 - a) botany study of plants
 - b) zoology study of animals
 - c) microbiology study of bacteria, viruses
 - d) anatomy study of structure
 - e) physiology study of cell and organ chemistry
 - f) embryology development of an egg through early development
 - g) genetics study of inheritance of traits
 - h) taxonomy the grouping of organisms by physical traits
 - I) cytology study of cells
 - j) histology study of tissues
 - k) ecology study of organisms in relationship to their environment.

II Nature of Life

1. Levels of Organization

atoms
molecules
compounds
organelles
cells
tissues
organs
organ systems
organism
population
community
ecosystem
biosphere

III Chemistry of Life

1. Elements

92 naturally occurring kinds ~ 20 kinds in cells

2. Atom

nucleus - center mass shells - arrangement of electrons

atomic number - number of protons atomic weight - protons plus neutrons proton number - determines the element electron number - equal to the proton # valence - # of electrons in the outermost shell isotopes- same # of protons, different # of neutrons.

Hypothetical Atom

Octet rule - all shells have a tendency to have 8 electrons in them except for the first shell which has 2.

3. Bonding

Ionic Bonding vs Covalent Bonding

Ionic Compounds

- a) Ionic Bonding
- b) Covalent Bonding
- c) Hydrogen Bonding

Covalent Bonding: Single, Double and Triple.

4. pH: Acid - Base Relationships

pH Value	<u>Log</u>	Number of	
		Hydrogen Ions	
pH 1	10^{-1}	.1	H^+
pH 2	10^{-2}	.01	H^{+}
pH 3	10^{-3}	.001	H^{+}
pH 4	10^{-4}	.0001	H^+
pH 5	10^{-5}	.00001	H^{+}
pH 6	10^{-6}	.000001	H^{+}
pH 7	10^{-7}	.000001	H^{+}
pH 8	10^{-8}	.0000001	H^+
pH 9	10^{-9}	.000000001	H^{+}
pH 10	10^{-10}	.0000000001	H^{+}
pH 11	10^{-11}	.0000000001	H^+
pH 12	10^{-12}	.00000000001	H^+
pH 13	10^{-13}	.0000000000001	H^{+}
pH 14	10^{-14}	.00000000000001	\mathbf{H}^{+}

Strong acids and bases vs. weak acids and bases

$$HCl \Rightarrow H^{+}Cl$$
 (Hydrochloric Acid) Strong Acid

$$H_3C\text{-COOH} \Rightarrow H_3C\text{-COO}^- + H \text{ (Acetic Acid)}$$
 Weak Acid

Buffers - Will tend to modify the acidity or alkalinity of a solution to keep it stablized

Composed of a Weak Acid or Weak Base

$$H_2CO_3 \rightleftarrows H^+ + HCO_3$$
 (Carbonic Acid)

- 5. Types of Chemical Changes in Cells
 - a) Synthesis

$$CO_2 + H_2O \Rightarrow H_2CO_3$$
 (Carbonic Acid)

b) Decomposition

$$H_2CO_3 \Rightarrow CO_2 + H_2O$$

c) Exchange

$$HCl + NaOH \rightarrow HOH + NaCl$$

d) Rearrangement

6. Catalyst

- a) Definition: Speeds up reaction, determines direction, takes place of external heat, and not used up in the reaction.
- b) Biological Catalysis Enzymes (proteins)
- c) Lock and Key model theory of enzyme activity
- d) Enzyme characteristics
 - 1) Temperature
 - 2) pH
 - 3) concentration
 - 4) heavy metals
 - 5) pressure

7. Important Biological Compounds

- a) Water H₂O
 - 1) Universal Solvent
 - 2) Cohesive and Adhesive Properties
 - 3) High Specific Heat
 - 4) High Boiling Point
 - 5) Coolant
 - 6) Less dense as solid than as a liquid.
- b) Carbon
 - 1) Covalence of four

- 2) Can bond with C, H, O, N
- 3) Form chains and rings

c) Carbohydrates

$$(C_n H_{2n} O_n)$$

1) Monosaccharide

Monosaccharides

- 2) Disaccharide
- 3) Polysaccharide

Carbohydrates Glucose Fructose Disaccharides

Polysaccharide

d) Lipids

- 1) glycol- an alcohol- note the "ol" ending on the word.
- 2) Fatty Acids- note the carboxyl group.
- 3) Saturated vs. unsaturated
- 4) Phospholipids: Substitution of a charged phosphate group for third fatty acid chain

Lipids

"R" group - chain of carbon and hydrogen.

Carboxyl group

Condensation - combining molecules into larger ones involves the loss of water.

e) Proteins

- 1) Amine groups N-H 2
- 2) Carboxyl groups C-OOH
- 3) Amino acids
- 4) Peptide bonds C-N-C
- 5) 20 amino acids make up all cellular protein and enzymes
- 6) Primary Structure, Secondary Structure, Tertiary
- 7) Coagulation affected by: heat

pressure electricity heavy metals

f) Nucleic Acids

- 1) Nucleic acids = nucleotides
- 2) nucleotides = nitrogen base + sugar + phosphate complex
- 3) Nitrogen bases

adenine guanine cytosine thymine

uracil

4) Sugars C₅

Deoxyribose Ribose

5) Two kinds of Nucleotides

ribose nucleotides deoxyribose nucleotides

6) Ribose nucleotides
adenine ribose phosphate
uracil ribose phosphate
guanine ribose phosphate
cytosine ribose phosphate

Proteins: Amino Acids

