Introduction to Science and the Chemistry of Life

I Nature of Science

1.Forms
a) Pure Science - study for the pure gain of knowledge
b) Applied Science - directed study to solve a known problem.
2. Procedures of Science - the Scientific Method
a) Observation - measurable, unbiased observations
b) Hypothesis - cause and effect or Null
c) Experimentation - use of control, sufficient numbers, unbiased analysis
d) Theory - a working explaination of cause and effect with predictive value.
e) Law - a proven theory in all measurable situations.
3. Limitations of Science
a) Scientific Domain - must be able to apply the Scientific Method to the area
b) Aims of Science - "to make and use theories"
4. Divisions of Biological Sciences
a) botany - study of plants
b) zoology - study of animals
c) microbiology - study of bacteria, viruses
d) anatomy - study of structure
e) physiology - study of cell and organ chemistry
f) embryology - development of an egg through early development
g) genetics - study of inheritance of traits
h) taxonomy - the grouping of organisms by physical traits
I) cytology - study of cells
j) histology - study of tissues
k) ecology - study of organisms in relationship to their environment.

II Nature of Life

1. Levels of Organization
```
atoms
molecules
compounds
organelles
cells
tissues
organs
organ systems
organism
population
community
ecosystem
biosphere
```


III Chemistry of Life

1. Elements

92 naturally occurring kinds
~ 20 kinds in cells
2. Atom
nucleus - center mass
shells - arrangement of electrons
atomic number - number of protons atomic weight - protons plus neutrons proton number - determines the element electron number - equal to the proton \# valence - \# of electrons in the outermost shell isotopes- same \# of protons, different \# of neutrons.

Hypothetical Atom
Octet rule - all shells have a tendency to have 8 electrons in them except for the first shell which has 2.

Ionic Bonding vs Covalent Bonding

lonic Compounds

Covalent Bonding: Single, Double and Triple.

Covalent Bond
4. pH : Acid - Base Relationships

pH Value	Log	$\frac{\text { Number of }}{\text { Hydrogen Ions }}$	
pH 1	10^{-1}	.1	
pH 2	10^{-2}	.01	H^{+}
pH 3	10^{-3}	.001	H^{+}
pH 4	10^{-4}	.0001	H^{+}
pH 5	10^{-5}	.00001	H^{+}
pH 6	10^{-6}	.000001	H^{+}
pH 7	10^{-7}	.0000001	H^{+}
pH 8	10^{-8}	.00000001	H^{+}
pH 9	10^{-9}	.000000001	H^{+}
pH 10	10^{-10}	.0000000001	H^{+}
pH 11	10^{-11}	.00000000001	H^{+}
pH 12	10^{-12}	.000000000001	H^{+}
pH 13	10^{-13}	.0000000000001	H^{+}
pH 14	10^{-14}	.00000000000001	H^{+}

Strong acids and bases vs. weak acids and bases
$\mathrm{HCl} \Rightarrow \mathrm{H}^{+-} \mathrm{Cl}$ (Hydrochloric Acid) Strong Acid
$\mathrm{H}_{3} \mathrm{C}-\mathrm{COOH} \Rightarrow \mathrm{H}_{3} \mathrm{C}-\mathrm{COO}^{-}{ }^{+} \mathrm{H}$ (Acetic Acid) Weak Acid
$\mathrm{NaOH} \Rightarrow \mathrm{Na}^{+-} \mathrm{OH}$ (Sodium Hydroxide) Strong Base
$\mathrm{NH}_{4} \mathrm{OH} \Rightarrow \mathrm{NH}_{4}{ }^{+-} \mathrm{OH}$ (Ammonium Hydroxide) Weak Base

Buffers - Will tend to modify the acidity or alkalinity of a solution to keep it stablized
Composed of a Weak Acid or Weak Base
$\mathrm{H}_{2} \mathrm{CO}_{3} \rightleftarrows \mathrm{H}^{+}+\mathrm{HCO}_{3}$ (Carbonic Acid)
5. Types of Chemical Changes in Cells
a) Synthesis

$$
\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \Rightarrow \mathrm{H}_{2} \mathrm{CO}_{3} \text { (Carbonic Acid) }
$$

b) Decomposition

$$
\mathrm{H}_{2} \mathrm{CO}_{3} \Rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}
$$

c) Exchange

$$
\mathrm{HCl}+\mathrm{NaOH} \Rightarrow \mathrm{HOH}+\mathrm{NaCl}
$$

d) Rearrangement

6. Catalyst
a) Definition : Speeds up reaction, determines direction, takes place of external heat, and not used up in the reaction.
b) Biological Catalysis - Enzymes (proteins)
c) Lock and Key model theory of enzyme activity
d) Enzyme characteristics

1) Temperature
2) pH
3) concentration
4) heavy metals
5) pressure

a) Water $\mathrm{H}_{2} \mathrm{O}$
6) Universal Solvent
7) Cohesive and Adhesive Properties
8) High Specific Heat
9) High Boiling Point
10) Coolant
11) Less dense as solid than as a liquid.
b) Carbon
12) Covalence of four

13) Can bond with C, H, O,N
14) Form chains and rings

15) Monosaccharide

16) Disaccharide
17) Polysaccharide

Carbohydrates

Polysaccharide
d) Lipids '

1) "glycol- an alcohol- note the "ol" ending on the word.
2), Fatty_Acids-note the carboxyl group.
3)', Saturated vs. unsaturated
2) Phospholipids: Substitution of a charged phosphate group for third fatty acid chain

Lipids

Glycerol
Fatty Acids

Triglycerides
Lipids

Phospholipid
"R" group - chain of carbon and hydrogen.
Carboxyl group
Condensation - combining molecules into larger ones involves the loss of water.

e)'Proteins

1) Amine groups - N-H 2
2) Carboxyl groups $\mathrm{C}-\mathrm{OOH}$
3) Amino acids
4) Peptide bonds - C-N-C
5) 20 amino acids make up all cellular protein and enzymes 6)'Primary Structure, Secondary Structure, Tertiary
hemoglobin
6) Coagulation affected by: heat pressure electricity heavy metals

f) Nucleic Acids

1) Nucleic acids = nucleotides
2) nucleotides $=$ nitrogen base + sugar + phosphate complex
3) Nitrogen bases
adenine
guanine
cytosine
thymine uracil
4) Sugars C_{5} Deoxyribose Ribose
5) Two kinds of Nucleotides
ribose nucleotides deoxyribose nucleotides
6) Ribose nucleotides
adenine ribose phosphate uracil ribose phosphate guanine ribose phosphate cytosine ribose phosphate

Proteins: Amino Acids

