Chapter 7 Goals

Major Goals of Chapter 7:
1 Counting - by numbers, by weighing and by volume.
2. Summing atomic masses for elements in correctly written chemical formulas.
3. Recognizing the difference between a formula mass (amu) \& atomic mass ($\mathrm{g} / \mathrm{mol}$)
4. Converting grams to moles \& Converting moles to grams.
5. Calculating percentage composition need in determining an empirical formula.

Before viewing, read the Chapter 7 Review:
7.1 Atomic Mass and Formula Mass
7.2 The Mole
7.3 Molar Mass
7.4. Calculations Using Molar Mass
7.5 Percent Composition and Empirical Formulas
7.6 Molecular Formulas

Chapter 7 summary

the eletrolysis of 36 grams of water will produce
4 grams of hydrogen and 32 grams oxygen

In chemistry there are two general methods to count particles:
A. $\begin{aligned} & \text { Physical Methods } \\ & \text { for counting amounts }\end{aligned}$
by numbers
by weighing
by volume
Chapter 7 deals with the physical measuring of amounts

- mole, and the mole mass ratio.
B.

Chemical Methods
for counting amounts
by a balanced reaction
Chapter 8 deals with the chemical measuring of amounts

- balancing a chemical reaction

Section 7.2 - The Mole (amounts)

$1 \mathrm{doz}=12$
1 case $=12$ or 24
1 hand $=5$ fingers
1 foot = 12 inches
1 mole $=6.02 \times 10^{+23}$
anything
anything
by numbers

Avogadro's number

Counting by numbers:

- one pair of anything is the same as two of anything.
- one dozen of anything is the same as twelve of anything.
- one case of wine is the same as twelve bottles of wine.
- one case of soda is the same as twenty four cans of soda.
- one hand is the same as five fingers.
- one foot is the same as twelve inches.

The mole is a counting device like those given above:

- one mole of anything is the same as $6.023 \times 10^{+23}$ anything
-one mole of anything equals Avogadro's number of anything

Section 7.2 - The Mole (amounts)

by weighing

1 proton $=1$ amu 1 neutron $\quad=1 \mathrm{amu}$ 1 hydrogen-1 atom $=1$ amu 1 carbon-12 atom $=12 \mathrm{amu}$

Counting by weighing using a mass to amount ratio:

- one gummy bear weighs the same as one gram
- one penny weighs the same as one gram
- one proton weighs the same as one amu (atomic mass unit)
- one neutron weighs the same as one amu (atomic mass unit)
- one hydrogen- 1 atom weighs the same as one amu (exactly)
- one carbon-12 atom weighs the same as twelve amu (exactly)

An atomic mass unit has a mass of 1.67×10^{-24} grams (rounded)
12 pennies $\times \frac{1 \text { gram }}{1 \text { penny }}=12$ grams
$12 \mathrm{amu} \times \frac{1.67 \times 10^{-24} \text { grams }}{1 \mathrm{amu}}=2.00 \times 10^{-25}$ grams

Section 7.2 - The Mole (amounts)

Counting by volume using a volume to amount ratio: \cdot one mole of any gas is the same as 22.4 liters @ $0^{\circ} \mathrm{C}$ and 1 atm .
$\bullet 1$ mole of any gas @ $0^{\circ} \mathrm{C}$ and 1 atm contains $6.023 \times 10^{+23}$ particles.
-EQUAL volumes of any gas contain EQUAL amounts of particles.

Section 7.1 - Atomic Mass and Formula Mass (mass to amount ratio)

Counting by weighing using a mass to amount ratio

12.0 mole C $\times \underline{12.01 \text { grams } C}=144$ grams C
12.0 moles $\mathrm{HCl} \times \quad 36.457$ grams $\mathrm{HCl}-437$ grams HCl

1 mole HCl
molar mass ratio

Section 7.1- Atomic Mass and Formula Mass (mass to amount ratio)

Summary:
Be sure to know that "moles of substance" multiplied by a molar mass ratio equals grams.

12.0 mole C x	12.01 grams C	$\begin{aligned} = & 144 \text { grams } \mathrm{C} \\ & \text { grams of substance } \end{aligned}$
	1 mole C	
12.0 moles HCl x	36.457 grams HCl	$=437$ grams HCl
	1 mole HCl molar mass ratio	

I. Counting Devices
A. Familar counting devices for counting physical objects larger than atoms:

1 dozen of _anything _o_ twelve__units of anything
A basket has 18 eggs. How many dozen eggs are contained in the basket?

$$
18 \text { eggs } x \frac{1 \text { dozen eggs }}{12 \text { eggs }}=1.5 \text { dozen eggs }
$$

B. In chemistry, our counting device is the mole:

Called Avogadro's Number

Section 7.1 - Atomic Mass and Formula Mass Supplemental packet page 120

C. In chemistry, we can't physically count atoms by inspection, so we like to count the total number of atoms, and molecules by weighing.

- Counting atoms - The mole has been given a precise definition as the number of atoms contained in 12.000000 grams "exactly" of pure carbon-12.

1 mole of ${ }_{6}^{12} \mathrm{C}=12.000000$ grams of ${ }_{6}^{12} \mathrm{C}=-\underline{6} .023 \times 10^{23}$ atoms of ${ }_{6}^{12} \mathrm{C}$

- Molar Mass is the mass in grams of one mole of any substance, and is also numerically equal to atomic mass unit [amu] expressed in grams.

D. Molar Mass is numerically equal to atomic mass unit (amu) expressed in grams.

Section 7.4 - Calculations Using Molar Mass

I. How can Avogadro's number be used in calculating the:
A. number of atoms for a given number of moles of an pure element?

How many grams is the same as 18 moles of lead, Pb ?
18 moles $\mathrm{x} \underline{6.023 \times 10^{23} \text { atoms }}=1.0841 \times 10^{25}$ atoms
$\mathrm{Pb} \quad 1$ mole atoms Pb
1.1×10^{25} (correct Sig Figs)
B. number of molecules for a given number of moles of a pure substance?

How many molecules is the same as 18 moles of moles?
18 moles $\mathrm{x} \underline{6.023 \times 10^{23} \text { molecules }}=1.1 \times 10^{25}$ molecules
C. number of atoms for a given number of grams of a pure substance?

How many atoms is the same as 18 grams of water?

D. number of molecules for a given number of grams of a pure substance?
$\underset{\mathrm{H}_{2} \mathrm{O}}{18.0 \text { grams }} \times \frac{1 \text { mole H}_{2} \mathrm{O}}{18.02 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}} \times \frac{6.023 \times 10^{23} \text { molecules }}{1 \mathrm{~mole}}=6.02 \times 10^{23} \underset{\mathrm{H}_{2} \mathrm{O}}{\mathrm{molecules}}$

Supplemental packet page 121 Counting Atoms

How many iron atoms are present in 3.00 moles of iron metal?
$1 \mathrm{~mol} \mathrm{Fe}=55.85 \mathrm{~g} \mathrm{Fe}=6.02 \times 10^{23}$ atoms Fe
x atoms $\mathrm{Fe}=3.00 \mathrm{molFe} \quad 1 \mathrm{molFe}=6.02 \times 10^{23}$ atoms Fe
$\times \mathrm{mol} \mathrm{Fe}=3.00 \mathrm{~mol} \mathrm{Fe} \times \frac{6.02 \times 10^{23} \text { atoms Fe }}{1 \mathrm{~mol} \mathrm{Fe}}=1.81 \times 10^{24}$ atoms Fe
Work out the following problems (show math set-ups)

Let's go over this example together

How many atoms of C are

x atoms $\mathrm{C}=27.4 \mathrm{~g} \mathrm{C}$ present in 27.4 grams of

$$
12.01 \mathrm{~g} \mathrm{C}=6.02 \times 10^{23} \text { atoms } \mathrm{C}
$$

Combined we have a grams to particles equivalent statement

Supplemental packet page 122 Chemical Compounds

How many atoms are present in a formula unit of sodium sulfate $\mathrm{Na}_{2} \mathrm{SO}_{4}$?

Just as a mole of atoms is based on the atomic mass or atomic weight, a mole of a compound is based upon the formula mass or formula weight.

	sodium sulfate, $\mathrm{Na}_{2} \mathrm{SO}_{4}$
First: Second: Third: Fourth:	How many atoms are there present per formula unit of $\mathrm{Na}_{2} \mathrm{SO}_{4}$? 7 atoms What is the mass in amu of one molecule of sodium sulfate? 142.06 amu What is the mass-in grams-of one mole of sodium sulfate? 142.06 g How many moles of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ are in $16.0 \mathrm{~g} \mathrm{Na}_{2} \mathrm{SO}_{4}$? $1.13 \mathrm{x}_{10}{ }^{-1} \mathrm{~mol}$

$$
\begin{array}{rlll}
\mathrm{Na}_{2} \mathrm{SO}_{4} & 2 \mathrm{Na} & 2 \mathrm{Na} \times 22.99= & 45.98 \\
& 1 \mathrm{~S} & 1 \mathrm{~S} \times 32.07= & 32.07 \\
& 4 \mathrm{O} & 4 \mathrm{O} \times 16.00= & 64.00 \\
& & & 142.06 \mathrm{~g} \mathrm{Na}_{2} \mathrm{SO}_{4}
\end{array}
$$

$\mathbf{x ~ m o l ~ N a} 2 \mathrm{SO}_{4}=16.0 \mathrm{~g} \mathrm{Na}_{2} \mathrm{SO}_{4} \mathrm{x} \quad \frac{1 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{SO}_{4}}{142.06 \mathrm{~g} \mathrm{Na}_{2} \mathrm{SO}_{4}}=\frac{1.13 \times 10^{-1} \mathrm{~mol} \mathrm{Na}_{2} \mathrm{SO}_{4}}{}$

Supplemental packet page 122
Molar Mass Calculations; one mole amount of a substance in grams

Supplemental page 123 Grams to Moles and Moles to Grams

How many moles are there in 41.7 g of NaNO_{3} ?

$1 \mathrm{~mol} \mathrm{NaNO}_{3}=85.0 \mathrm{~g} \mathrm{NaNQ} \quad 1 \mathrm{Na} 23.0=23.0$

1. In every calculuation problem ALVWA $14.0=14.0$

Caiculate molar mass; MíAKE a Tabie and D Piظ̆Đlar mass $\overline{85.0 \mathrm{~g} / \mathrm{mol}}$

Calculate the number of moles in :

12.6 grams calcium sulfate	6.18×10^{3} grams ammonium carbonate

CdSOy many moles ${ }^{1} \mathrm{Cax}$ ($40.1=40.1$ cal $10 \quad 40 \times 16.0=64.0$
 12. Br_{g} they chanlot correcty calcupate-f molar mass

$$
6.18 \times 10^{3} \mathrm{~g}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3} \quad \mathrm{x} \frac{1 \mathrm{~mol}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}}{96.01 \mathrm{~g}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}}=
$$

CaSO_{4}
$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$

How many moles of calcium sulfate atoms are present in $\mathbf{1 2 . 6}$ grams of calcium sulfate ionic salt?

How many moles of ammonium carbonate are present in 6.18×10^{3} grams of ammonium carbonate ionic salt?

Converting Mole Amounts to Grams

Calculate the number of grams in (show math set-ups):

KCl

$$
\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}
$$

Section 7.5 - Percent Composition and Empirical Formulas

$$
\frac{\text { Part }}{\text { Whole }} \times 100 \%=\text { percentage composition }
$$

What is the percentage of potassium in potassium chloride?

1. Write the correct formula for the substance
2. Calculate the molar mass of the substance (the whole)
3. Divide the individual parts by the whole times 100%

$$
\mathrm{KCl} 1 \mathrm{~K} \times 39.1=\begin{aligned}
& 39.1 \div 74.6=52.4 \% \\
& 1 \mathrm{Cl} \times 35.5= \\
& \frac{35.5 \div 74.6=47.6 \%}{74.6 \mathrm{~g} / \mathrm{mol}}=
\end{aligned}
$$

What is the percentage of barium in barium nitrate?
$\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2} \begin{aligned} & 1 \mathrm{Bax} 137.3=137.3 \div 261.3=52.5 \% \\ & 2 \mathrm{~N} \times 14.0=28.0 \div 261.3=10.7 \% \\ & 6 \mathrm{O} \times 16.0=\frac{96.0 \div 261.3}{261.3 \mathrm{~g} / \mathrm{mol}}=36.7 \%\end{aligned}$

Section 7.5 - Percent Composition and Empirical Formulas

1. Explain the difference between the empirical formula and the molecular formula of a compound.
An empirical formula is the smallest whole number ratio for a molecular formula. For example, $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ would have an empirical formula $\mathrm{C}_{1} \mathrm{H}_{2} \mathrm{O}_{1}$
2. The molecular formula of the gas acetylene is $\mathrm{C}_{2} \mathrm{H}_{2}$. What is the empirical formula?
$\mathrm{C}_{2} \mathrm{H}_{2}$ is divisible by " n ratio factor" of two; thus $\mathrm{C}_{1} \mathrm{H}_{1}$ is the empirical formula.
"n ratio factor" $=\frac{\text { molar mass }}{\text { empirical mass }}$

3. The empirical formula for a compound used as a green paint pigment is $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{As}_{3} \mathrm{Cu}_{2} \mathrm{O}_{8}$.
The molar mass is 1013.71 grams. What is the molecular formula?
Solve for the " n ratio factor"

$$
\text { "n ratio factor" }=\frac{\text { molar mass }}{\text { empirical mass }}
$$

by first calculating the empirical mass

$$
\begin{aligned}
& 2 \mathrm{C} \mathrm{x} 12.0=24.0 \\
& 3 \mathrm{H} \mathrm{x} 1.0=3.0 \\
& 3 \mathrm{As} \times 74.9=224.7 \\
& 2 \mathrm{Cu} \times 62.9=125.6 \\
& 8 \mathrm{O} \times 16.0=128.0 \\
& \hline \text { empirical mass } 505.3 \mathrm{~g} / \mathrm{mol}
\end{aligned}
$$

$$
\text { "n ratio factor" }=\frac{1013.71 \mathrm{~g} / \mathrm{mol}}{\text { empirical mass }}
$$

then, by dividing molar mass by empirical mass

$$
\mid \text { "n ratio factor" }=\frac{1013.71 \mathrm{~g} / \mathrm{mol}}{505.3 \mathrm{~g} / \mathrm{mol}}|\square| \text { "n ratio factor" }=2
$$

Continued on the next slide

Section 7.5 - Percent Composition and Empirical Formulas
Continued from the previous slide
Finally, multiply empirical by n
$\left[\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{As}_{3} \mathrm{Cu}_{2} \mathrm{O}_{8}\right] \times 2$ empirical formula

$\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{As}_{6} \mathrm{Cu}_{4} \mathrm{O}_{16}$
molecular formula exists as two empirical formulas

Section 7.5 - Percent Composition and Empirical Formulas
4. A sugar which is broken down by the body to produce energy has the following percent composition $(\mathrm{C}=39.99 \%, \mathrm{H}=6.713 \%$ and $\mathrm{O}=53.29 \%$) and a molar mass of 210.18 g . What is the empirical formula? What is the molecular formula?

Consider the following, if you had a 100 gram sample of this substance, how many grams of it would be carbon, hydrogen and oxygen?
39.99% C x 100 gram sample $=39.99$ grams carbon in sample $6.713 \% \mathrm{H} \times 100$ gram sample $=6.713$ grams hydrogen in sample 53.29% O x 100 gram sample $=53.29$ grams oxygen in sample

On the next slide, we'll convert grams of sample to moles.
From knowing the number of moles, a mole ratio of atoms in the chemical formula will be calculated.

Section 7.5 - Percent Composition and Empirical Formulas

MAKE A TABLE!!!!!! And convert grams to moles which will be the mole ratio
4. A sugar which is broken down by the body to produce energy has the following percent composition ($\mathrm{C}=39.99 \%, \mathrm{H}=6.713 \%$ and $\mathrm{O}=53.29 \%$) and a molar mass of 210.18 g . What is the empirical formula? What is the molecular formula?

$\begin{aligned} & \text { grams } \\ & \text { divided by } \end{aligned}$molar mass	analysis	$\mathrm{C}=39.99$ \%	$\mathrm{H}=6.713 \%$	$\mathrm{O}=53.29$ \%
	$\begin{gathered} \text { grams } \\ \rightarrow \begin{array}{c} \text { assume } 100 \mathrm{~g} \\ \text { sample } \end{array} \end{gathered}$	39.99 grams	6.713 grams	53.29 grams
	MM (molar mass)	$12.0 \mathrm{~g} / \mathrm{mol}$	$1.0 \mathrm{~g} / \mathrm{mol}$	$16.0 \mathrm{~g} / \mathrm{mol}$
Mole ratio of atoms in substance	\rightarrow mole	3.33 mol	6.71 mol	3.33 mol
	he ratio	3.33 mol	6.71 mol	3.33 mol
	$\begin{gathered} \text { divide by the } \\ \text { smallest } \\ \hline \end{gathered}$	3.33 mol	3.33 mol	3.33 mol
	4 whole number ratio	C_{1}	H_{2}	O_{1}

1 C to 2 H to 1 O is a $1: 2$: 1 mole ratio of carbon to hydrogen to oxygen in the empirical formula for a substance of $39.99 \mathrm{~g} \mathrm{C}, 6.713 \mathrm{gH}, 53.29 \mathrm{C}$ by mass

Section 7.5 - Percent Composition and Empirical Formulas
To check your work, consider calculating a percentage composition
The empirical formula for the sugar used in the analysis is $\mathrm{C}_{1} \mathrm{H}_{2} \mathrm{O}_{1}$. Calculate a percentage composition of each element in the formula.

1. calculate the empirical mass

$$
\begin{aligned}
& 1 \mathrm{Cx} 12.0=12.0 \div 30.0=0.400 \times 100 \%=40.0 \% \\
& 2 \mathrm{H} \mathrm{x} 1.0=2.0 \div 30.0=0.67 \times 100 \%=6.7 \% \\
& 1 \mathrm{O} \times 16.0=16.0 \div 30.0=0.400 \times 100 \%=53.3 \%
\end{aligned}
$$

2. Divide the parts by the whole and times by 100%
C_{1}
H_{2}
O_{1}

This type of analysis always produces the lowest whole number ratio, thus we have now just calculated the empirical formula
5. Using the empirical formula and molar mass that was given determine the molecular formula for the substance given the molar mass is $210.18 \mathrm{~g} / \mathrm{mol}$
The empirical formula for a compound used in the past as $\mathrm{C}_{1} \mathrm{H}_{2} \mathrm{O}_{1}$ The molar mass is $210.18 \mathrm{~g} / \mathrm{mol}$. What is the molecular formula?
first, calculate the " n ratio factor"

$$
\text { "n ratio factor" }=\frac{\text { molar mass }}{\text { empirical mass }}
$$

second, calculate the empirical mass

$$
\begin{aligned}
& 1 \mathrm{C} \mathrm{x} 12.0=12.0 \\
& 2 \mathrm{H} \mathrm{x} 1.0=2.0 \\
& 1 \mathrm{O} \times 16.0=16.0 \\
& \hline \text { empirical mass } 30.0 \mathrm{~g} / \mathrm{mol}
\end{aligned}
$$

$$
\text { "n ratio factor" }=\frac{210.18 \mathrm{~g} / \mathrm{mol}}{\text { empirical mass }}
$$

third, divide molar mass by empirical mass
$" \mathrm{n}$ ratio factor" $\left.=\frac{210.18 \mathrm{~g} / \mathrm{mol}}{30.0 \mathrm{~g} / \mathrm{mol}} \square\right\rangle$ "n ratio factor" $=6$

Continued on the next slide

Section 7.6 - Molecular Formulas
Continued from the previous slide fourth, multiply empirical formula by the " n ratio factor"

The molecular formula is $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
"n ratio factor" $=\frac{210.18 \mathrm{~g} / \mathrm{mol}}{30.0 \mathrm{~g} / \mathrm{mol}}$
$\left[\mathrm{C}_{1} \mathrm{H}_{2} \mathrm{O}_{1}\right] \times 6$ empirical formula
" n ratio factor" $=6$ $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
molecular formula $210.18 \mathrm{~g} / \mathrm{mol}$

