Atoms \& Elements

Major Goals of our Atom \& Elements Module:

1. Finding the exact location (home) for the electron in an atom
2. Discuss physical and chemical experimental evidence which supports
a) electronic structure \&
b) the periodic trends in the properties of atoms.

This powerpoint reviews key topics for atom \& elements

- Electromagnetic Radiation
- Atomic Spectra \& Energy Levels
- Energy Levels (shells), Sublevel(subshell) \& Orbitals
- Writing Orbital Diagrams \& Electron Configurations
- Electron Configurations \& the Periodic Table
- Periodic Trends of the Elements

Handout "All about e-" (click here)

"It's all about e-"

Properties for an Electron in an Atom

1. light weight particle; $\mathbf{1} / \mathbf{2 0 0 0}$ th an atomic mass unit (amu)
2. (-) negatively charged particle
3. loosely bound; American Heritage Dictionary defines loose as - not fastened; unbound
4. attracted to (+) positively charged particles
5. repelled by other negatively charged particles
6. dynamic not static; I'd would like to move about or jump around
7. at home within an electron shell shown by Bohr's model
8. a traveler and would love to travel but never far from home
9. easily excitable

Point 7 is in red because some textbooks do not discuss Bohr's model directly, only indirectly when discussing Atom \& Elements basics.

Supplemental packet page 44

Atomic Spectra \& Energy Levels
Point 7 is in red because some textbooks do not discuss Bohr's model directly, only indirectly when discussing Atom \& Elements basics.

The ladder and the concentric circles below are visuals for Bohr's model.

Bohr's Model Playlist (click here)

Bohr discovered that
Electrons have a home in a discrete "quantized" shell quantized = discrete
Bohr's Model for atoms

Where
Supplemental packet page 44
The maximum number of electrons per shell is given by $2(n)^{2}$

For his new discovery,
He was awarded the
Nobel Prize in physics 1922

[^0]
Supplemental packet page 44

Bohr based his discovery on the emission spectrum for hydrogen

F. 1913 Neils Bohr

1. The HYDROGEN atom has played a major role in the development of models of electronic structure.
2. In a hydrogen discharge tube, individual atoms of hydrogen emit visible light.
3. When the light is passed through a prism, refraction occurs, and
a quantized emission spectrum appears.

$$
\begin{aligned}
& \text { lappears. } \\
& \text { quantized }
\end{aligned}=\text { discrete (colored lines of specific energy) }
$$

energy $+\mathrm{H}_{2} \rightarrow 2 \mathrm{H} \bullet$
Where of the four colors listed,

violet color (visible light) is highest in energy ${ }^{\text {His thoughts about the atom. }}$
 Red color (wisiding an electron.
Visible light is an example of electromagnetic radiation

Study all the basic information on this page

Record into your notes opposite page 48
A. Valence electrons - Valence (outemost) electrons are in the principle energy shell furthest from the nucleus (the highest energy shell).
a. Draw Bohr electron dot struc tures for the elements of period (row) 2 .

Lewis Dot Structure only show outermost electrons (valence electrons)

- the group number equals the number of valence electrons for representative elements
- only show the valence electrons as dots about the atom in a Lewis dot

Summary: Row number = number of shells in Bohr's Model
Group number = number of valence electrons in Lewis dot

Energy Levels (shells), Sublevel(subshell), Orbitals
In today's world, quantum physics gives a better theoretical model for where an electron is located. Electrons resided in an orbital within a subshell of an electron shell

What is the exact address for the location of a hydrogen electron?

Perhaps a good illustration for finding an electron address would be

s,p,df=type of track home

$$
4 s \quad 4 p \quad 4 d \quad 4 f
$$

Writing Orbital Diagrams \& Electron Configurations
Our current model: the location (the home address) for an electron
What is the exact address for the location of a hydrogen electron?

putting it all together

Supplemental page 48 \& 53 nucleus									1s 2s 2p 3s 3p 4s 3d 4p 5s 4d..... number
H		(1+)	4.			$1 s^{1}$			
He	2	$2+$	4.			$1 s^{2}$			frst row eleme
Li	3	(3+)	e)	2		15^{2}	$2 s^{1}$		
Be	4	(4+)	e)	e)		$1 \mathrm{~s}^{2}$	$2 s^{2}$		
B	5	(5+)	$\begin{aligned} & \text { è } \\ & \text { en } \end{aligned}$	è		$1 \mathrm{~s}^{2}$	$2 s^{2}$	2 p	kalchee shell
C	6	(6+)	e)	ed		$1 \mathrm{~s}^{2}$	$2 s^{2}$	$2 p^{2}$	second row elements
N	7	(7+	e)	é		$1 \mathrm{~s}^{2}$	$2 s^{2}$	$2 p^{3}$	
0	8	(8+)	e)	ef		$1 \mathrm{~s}^{2}$	$2 s^{2}$	$2 p^{4}$	
F	9	(9+)	e)	ese		$1 \mathrm{~s}^{2}$	$2 s^{2}$	$2 p^{5}$	
Ne	10	(10)	e)	$\begin{aligned} & \text { efe } \\ & \text { eete } \end{aligned}$		1s ${ }^{2}$	$2 s^{2}$	$2 p^{6}$	
Na	11	(11+)	e))	$1 \mathrm{~s}^{2}$	$2 s^{2}$	$2 p^{6}$	$\mathbf{3 s}{ }^{\mathbf{1}}$ third row elements

Supplemental packet page 49 Atomic Structure	

- Orbitals have shapes mapped out at 90 percent probability :

- Orbitals are regions of greatest probability within a subshell for finding an electron; two electrons MAXIMUM per orbital.
- Heisenburg Uncertainty Principle - (Werner von Heisenberg) Nobel prize in physics 1932
- The Schrödinger equation maps the orbital regions mathematically at $\mathbf{9 0 \%}$ probability. (Erwin Schrödinger) Nobel prize in physics 1939; productive forms of atomic theory

What will be the arrangement of subshells in an atom?
Supplemental packet page 51
Textbook

- These subshells are arranged from lowest to highest energy values outwards from the nucleus of the atom

- This electron directory is called an "electron configuration"

Electron Configurations and the Periodic Table

- These subshells are arranged from lowest to highest energy values outwards from the nucleus of the atom
Textbook

- This electron directory is called an "electron configuration"

Bottom right corner of supplemental packet page 51

- The "electron configuration" filling order can be learned by looking at the periodic table arranged by increasing atomic \#

Where is hydrogen's one electron located??????

Where are the six electrons for carbon located???????
${ }_{6} \mathrm{C}$
$\left(1 \mathrm{~s}^{2}-2 \mathrm{~s}^{2}-2 \mathrm{p}^{2}\right.$

Quantum Wave Mechanical Model (Schrodinger)

Maximum number in

 s sublevel is 2 electron p sublevel is 6 electrons d sublevel is 10 electrons f sublevel is $\mathbf{1 4}$ electrons

An electron directory is
two electrons per orbital
called "electron configuration", $1 \mathrm{~s} 2 \mathrm{~s} 2 p 3 s 3 p 4 s 3 d ~ 4 p 5 s 4 d 5 p \ldots$.
It is begins starting from the lowest energy orbital, the 1 s

Where is the last electron to fill for aluminum located??????

Supplemental packet page 53

Electron Orbital Filling

F^{-}and Na^{+}are isoelectronic (the same electronically) with Ne All elements lose or gain electrons to achieve noble gas e- configuration

Supplemental packet pages 52 \& 57

two electrone per orbital
4. For the following pairs of orbitals, indicate which is lower in energy.

6. Give the maximum number of electrons in each:	the principle level $\mathrm{n}=3$	a 4d sublevel	an f sublevel

| 7. A p sublevel has the following shape: | A. | B. | C. |
| :--- | :--- | :--- | :--- | :--- | :--- |

| 8. | A p orbital has the following shape: | A. | B. |
| :--- | :--- | :--- | :--- | :--- | :--- |

Where would a $2 s^{1}$ electron be located? In subshell located within a shell.

Second shell
The letter represents
A 's" sublevel;
Both the shell \&
"s" subshell are described mathematically by Quantum Mechanics

The shell (principal quantum level)
Is the most important locator for an electron

More on orbital shapes and volumes

- The subshells are arranged from lowest to highest energy values

Know the shape (volume) and spatial orientation (distance from the nucleus) for the subshells and for the orbitals

- lower " n " values mean the electron is closer to the nucleus
- subshells increase in energy in the following order $s<p<d<f$ - lower " n " values means smaller size and volume for the atom

[^0]: You don't have to be smart to be awarded a Nobel Prize. You just have to
 discover something new which revolutionizes the way society views the world around us.

