

1. Chemical reactions involve just the simple rearrangement of atoms.
2. Atoms are conserved in a chemical reaction.

This ture for the above decomposition of water by electrolysis.
$2 \mathrm{H}_{2} \mathrm{O}$

4 hydrogen atoms
2 oxygen atoms
(H) H)
(H) H$)$

4 hydrogen atoms
2 oxygen atoms

Combination - Synthesis (the REDOX process defined) iron metal plus chlorine gas forms>iron (II) chloride 1 Fe (s) $+1 \mathrm{Cl}_{2}(\mathrm{~g}) \longrightarrow 1 \mathrm{FeCl} \mathrm{Fe}^{2+}$

Combination - Synthesis (the REDOX process defined)
iron metal chlorine gas forms iron (II) chloride
$1 \mathrm{Fe}(\mathrm{s})+1 \mathrm{Cl}_{2}(\mathrm{~g}) \longrightarrow 1 \mathrm{FeCl}_{2}(\mathrm{~s})$
Analyzing the half reactions

$1 \mathrm{Fe}^{0}$
$\longrightarrow 1 \mathrm{Fe}^{2+}$ OIL
$1 \mathrm{Cl}_{2}{ }^{\mathrm{o}}$

$2 \mathrm{Cl}^{-}$
Reduction
RIG
the electrons on the reactant side cancel the electrons on the product side
$1 \mathrm{Fe}(\mathrm{s})+1 \mathrm{Cl}_{2}(\mathrm{~g}) \longrightarrow 1 \mathrm{FeCl}_{2}(\mathrm{~s})$

What reactant was oxidized? What reactant was reduced?

magnesium metal solid
oxygen
gas
magnesium oxide solid ionic salt

Oxygen gained electrons

Combination - Synthesis - PHOTOSYNTHESIS

$$
6 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}_{\text {chlorophyll }}^{\text {caralyi }} 1 \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+6 \mathrm{O}_{2}
$$

