Acids and Bases
 Dr.Gergens - SD Mesa College

- General Properties Periodic Trends
- Acid - Base (Strong versus Weak)
- Acid - Base Conjugates
- Reactions
- pH Scale
- Solution Stoichiometry and Titration
- Overall Review of Basic Principles

Acids

- taste sour (vinegar, vitamin C, citric acid, folic acid)
- feel sticky

BLUE (litmus) to red ... acid

- turn blue litmus indicator paper (acid) to red
- often have H listed first in their chemical formula strong acid car battery \#1 stomach acid Coke \& Pepsi vinegar $\underset{\text { perchloric }}{\mathrm{HClO}_{4}}>\underset{\text { sulfuric }}{\mathrm{H}_{2} \mathrm{SO}_{4}}>\underset{\text { hydrochloric }}{>\mathrm{HCl}}>\underset{\text { nitric }}{\mathrm{HNO}_{3}} \gg \underset{\text { phosphoric }}{\mathrm{H}_{3} \mathrm{PO}_{4}}>\underset{\text { acetic }}{\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}}$ acid acid acid acid acid acid
- often react with metals to produce hydrogen gas
$\underset{\text { atom metal }}{\operatorname{Mg}(\mathrm{s})}+\underset{\text { strong acid }}{2 \mathrm{HCl}(\mathrm{aq})} \longrightarrow \underset{\text { ionic salt }}{1 \mathrm{MgCl}_{2}(\mathrm{aq})}+\underset{\text { covalent }}{1 \mathrm{H}_{2}(\mathrm{~g})}$ atom metal (zero charge)
- strong acids react with strong base to give salt and water $1 \mathrm{NaOH}(\mathrm{aq})+1 \mathrm{HCl}(\mathrm{aq}) \longrightarrow 1 \mathrm{NaCl}(\mathrm{aq})+1 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$

Bases

- taste bitter (shampoo, soap, baking soda, bleach)
- feel slippery (saponify the oils in your skin to form soap)
- turn red litmus to blue (base)
- sometimes have hydroxide ion OH^{-}given in their formula

NaOH (drano), $\mathrm{Ca}(\mathrm{OH})_{2}$ (added to orange juice), $\mathrm{Mg}(\mathrm{OH})_{2}$ (milk of magnesia)

- weak bases react with water to form hydroxide ion at equilibrium

- strong acids react with strong base to give salt and water $1 \mathrm{NaOH}(\mathrm{aq})+1 \mathrm{HCl}(\mathrm{aq}) \longrightarrow 1 \mathrm{NaCl}(\mathrm{aq}) \quad+1 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ strong base ionic salt strong acid ionic salt water $\mathrm{pH}=7$

Periodic Trend for increasing Acid Strength (across a period)

Periodic Trend

acidity increases				Electronegativity increases within a row
CH_{4}	NH_{3}	$\mathrm{H}_{2} \mathrm{O}$	$\mathrm{H}-\mathrm{F}$	
	PH_{3}	$\mathrm{H}_{2} \mathrm{~S}$	$\mathrm{H}-\mathrm{Cl}$	Electronegativity increases within a row acidity increases
			$\mathrm{H}-\mathrm{Br}$	

The more electronegative atom produces a more polar $\mathrm{H}-\mathrm{X}$ bond Electronegativity Trend
$\mathrm{F}>\mathrm{O}>\mathrm{N}>\mathrm{Cl}>\mathrm{Br}>\mathrm{I}>\mathrm{S}>\mathrm{C}>\mathrm{H}$ Foncl Brisch

Periodic Trend for increasing Acid Strength (down a family)

Atom size increases going down a family with in " n " shells.
A larger atoms afford longer $\mathrm{H}-\mathrm{X}$ bond.
Longer covalent bonds are more easily broken.

Use the Periodic Trend for increasing acid strength to make your prediction

Which is the stronger acid and why?
HCl or HI I is a larger atom with a more easily broken H-I bond
$\mathrm{H}_{2} \mathrm{O}$ or $\mathrm{H}_{2} \mathrm{~S}$ S is a larger atom with a more easily broken $\mathrm{H}-\mathrm{S}$ bond
$\mathrm{H}_{2} \mathrm{~S}$ or HCl Cl is a more electronegative atom; more polar bond

Periodic Trend for increasing conjugate base strength

For every Acid, there is a conjugate base
To draw a conjugate base, just remove a H^{+}from its acid formula

ACID Conjugate base
$\mathrm{H}-\mathrm{I}$ becomes I^{-}
$\mathrm{H}-\mathrm{Br}$ becomes Br^{-}
$\mathrm{H}-\mathrm{Cl}$ becomes Cl^{-}
H-F becomes F^{-}

Note: basicity for these conjugate base
$\mathrm{H}_{2} \mathrm{O}$ becomes OH^{-}
NH_{3} becomes NH_{2}^{-}
CH_{4} becomes CH_{3} weakest acid strongest base

Use the Periodic Trend for increasing conjugate base strength to make your prediction

Which is the stronger base?

1) The first questions to ask in evaluating the preferred side of a proton transfer reaction:
A) Which is the Acid? (acids generally have H listed first in their formula), and are the proton donor on the left side of the equation.
B) Which is the Base? (bases can be anions or ionic salts, $\mathrm{NaSH}, \mathrm{KOH}, \mathrm{LiCH}_{3}$), and are the proton acceptor on the left side of the equation, including ammonia, NH_{3}
2) The second question to ask in :

Where is the conjugate base? The conjugate base shown on the right hand side of the reaction is the species formed from the Acid with a hydrogen ion missing.
Where is the conjugate acid? the conjugate acid shown on the right hand side of the reaction is the species formed from the Base with a hydrogen ion added.
Evaluating Acid-Base Reactions
(relative strength to produce weaker acid)

$\mathrm{H}-\mathrm{I}$
Acid
:---:
Base
:---:
conjBase
:---:
conjAcid

3) Using our period trend for acidity and conjugate base strength, we can make an educated decisions regarding relative strength for our acids and bases in each reaction.
4) Our reaction arrow points to the \longrightarrow weaker side of equilibrium.

Periodic Trend

Evaluating Acid-Base Reactions
(relative strength to produce weaker acid)

Our reaction arrow points to the weaker side of equilibrium.
Periodic Trend

Acidic Oxides (nonmetal oxide molecules)

nonmetal oxide molecules

CO_{2}	The reaction of the oxides on the left	$\mathrm{H}_{2} \mathrm{CO}_{3}$
SO_{3}	$\frac{\text { added to water produces }}{\text { these acids on the right }}$	
NO		$\mathrm{H}_{2} \mathrm{SO}_{4}$
HNO_{3}		

Can you draw the Lewis dot structures for all of these compounds?
Begin by counting valence electrons.
Remember, acids containing oxygen have an H attached to an O

Basic Oxides (metal oxides ionic salts - nonmolecules)

metal oxide nonmolecules

$\mathrm{Na}_{2} \mathrm{O}$	NaOH				
MgO	The reaction of the oxides on the left added to water produces	NaOH			
(hese ionic base salts on the right			\quad	$\mathrm{Mg}(\mathrm{OH})_{2}$	
:---:	:---:				
CaO	$\mathrm{Ca}(\mathrm{OH})_{2}$				

Can you draw the visual representation for all these compounds?

Acid-Base reactions of Carbonates

ionic carbonate salts
NaHCO_{3}

	The reaction of these carbonates	
MgCO_{3}	on the left	CO_{2}
$\mathrm{CaCO}_{3 \text { (marble) }}$	carbon dioxide gas and $\mathrm{H}_{2} \mathrm{O}$ added to acid produces	$\mathrm{H}_{2} \mathrm{O}$

Predict the products of these reactions and balance the reaction:

$$
\begin{array}{ll}
1 \mathrm{NaHCO}_{3}+1 \mathrm{HCl} & -------->1 \mathrm{NaCl} \\
1 \mathrm{MgCO}_{3}+1 \mathrm{H}_{2} \mathrm{O}+1 \mathrm{HO}_{2} \\
1 \mathrm{SO}_{4} & --------->1 \mathrm{MgSO}_{4}
\end{array}+1 \mathrm{H}_{2} \mathrm{O}+1 \mathrm{CO}_{2} .
$$

pH scale range 1 to 14 1+ most acidic $7=$ neutral 14 = most alkaline	REACTION	14.0	- Household Lye	
	Extremely Alkaline	13.0	- Bleach	
	Extremely Alkaline	12.0		
	Extremely Alkaline	11.0	Ammonia	
Water with a pH of below 6.5 or above 8.5 is generally unacceptable for drinking water.	Strongly Alkaline	10.0		
	Moderately Alkaline	9.0	- Barax ${ }^{\text {- }}$ - ${ }^{\text {a }}$	
	Slightly Alkaline	8.0	- Sea Water	Common Range
	Neutral	7.0	- Blood - Distilled Water - Milk	for Most Natural Waters
	Slightly Acid	6.0	- Corn	
	Moderately Acid	5.0	- Boric Acid	
	Strongly Acid	4.0		
	Extremely Acid	3.0	- Vinegar	
	Excessively Acid	2.0		
	Very Extremely Acid	1.0	- Battery Acid	
		0.0		

$$
\begin{aligned}
{\left[\mathrm{H}^{+}\right] } & =10^{-(\mathrm{pH} \text { value })} \\
\mathrm{pH} \text { value } & =-\log _{10}\left[\mathrm{H}^{+}\right] \\
\mathrm{Kw} & =\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]
\end{aligned}
$$

Stoichiometry \& Titration

Watch the video on titration linked below
http://homework.sdmesa.edu/dgergens/chem100L/titration/titration.html

