

	Atomic History supplemental HO			
	Dr. Gergens - SD Mesa College			
I.	A brief history in the development of atomic structure			
A.	400 B.C. The Greeks Substances were made of extremely small 1. atomos invisible and indivisible particles "atomos" atoms meaning invisible			
Β.	1627-1691 Robert Boyle 1. Recognized as one of the first experimentalist Science should be grounded in experiment			
с.	1808 John Dalton 1. Atomic Theory (five postulates) Memorize and understand all five postulates			
1. Elen 2. All a 3. The	lents are made of tiny particles called atoms toms of a given element are identical atoms of one element are different from another element			

Supplemental HO 41 Today, 200 years later, Dalton's postulates for 2 and 5 need to be modified:

1. Elements are made of tiny particles called atoms

2. All atoms of a given element are identical

3. The atoms of one element are different from another element

- 4. Atoms combine with other atoms in fixed numbers (ratio)
- 5. Atoms in a chemical reaction are not created nor destroyed,
- but involve simple rearrangements, AB + CD -> AD + BC

2) All elements consist as a <u>mixture</u> of isotopes; atoms identical in the number of protons but different in the number of neutrons.

5)except for nuclear reactions (fusion & fission), where atoms are created (fusion) and destroyed (fission).

Law of Electrostatics - Opposites Attract, Like Charges Repel

Crooks Tube Demo

- 1. Studies with electricity and "Law of Electrostatics"
- 2. Cathode Ray Tube or CRT; Crooks Tube
- 3. A electronically neutral metal plate can be made to discharge a stream of particles.
- 4. Identify that the stream of particles had mass and negative charge unlike light energy.

The Application of Electrons as Negative Particles having Mass Crook's Tube demo, fluorescent lighting, and television
Philo Taylor Farnsworth (1906-1971), born in Beaver Creek, Utah who has been <u>called the forgotten father of television</u>, won a prize offered by the Science and Invention magazine for developing a thief proof automobile ignition switch, at the age of thirteen.
The first patents for the Farnsworth television system were filed January 1927. He was 21 years old.

http://www.museum.tv/archives/etv/F/htmlF/farnsworthp/farnsworthp.htm

	supplemental HO 42
In your own words descri	be each of the following:
J. J. Thomson "raisin pudding atom" (1897)	Rutherford gold foil experiment (1910)
Butherford nuclear stom (1011)	Pohr "electron chell" stom (1012)
Rutherrord nuclear atom (1911)	Bonr electron shell atom (1913)

b.	Con phy suba	nplete the sical cha atomic pa	e table by racteristic articles.	filling in for each	the relative masses, and of the identified
c.	Brie of e	efly state ach type	the import of subato	rtance and mic partic	I the physical characteristic cle.
Letter	Name	Relative mass	Relative mass	Mass (a.m.u.)	Importance and Physical Characteristics
	proton	2000	1	1.000	1.Gives element's identity 2.Balances electron charge
	electron	1	1/2000th	1/2000th	1.Gives element's reactivity 2.Balances proton charge
	neutron	2000	1	1.002	1.Separate proton charge 2.Provides for isotopes