

1. Chemical reactions involve just the simple rearrangement of atoms.
2. Atoms are conserved in a chemical reaction.

This ture for the above decomposition of water by electrolysis.

The chemical equation is the shorthand notation for a chemical reaction.

$$
\text { Reactants } \xrightarrow{\text { react to produce }} \text { Products }
$$

Law of Conservation of Mass - Matter cannot be gained or lost in the process of a chemical reaction. The law of conservation of mass states that we must have a balanced equation. List five factors involved in the construction of an equation or "chemical recipe."
$1 . \quad$ The identity of products and reactants must be specified.
2. Reactants are written to the left of the reaction arrow (--->>) and products to the i
3. The physical state of reactants and products is shown is parentheses; (s), (I), (g), (a
4. The symbol Δ over the reaction arrow means that heat energy is necessary for the reaction to occur.
5.

The equation must be balanced.

Steps for balancing a chemical equation

Don't do this!!!!

In balancing, we would like the lowest whole number molar ratio. Where the number out in front is called a molar coefficient.

But what if an individual balanced the magnesium first?

The reaction is balanced, BUT there is a fractional molar coefficient. We must remove the fraction by multiplying through by 2 .
2•1

$2 \cdot \frac{1}{2}$

1) always balance oxygens last;
2) then multiply by factor of 2 , to remove any fractional molar coefficient that might be present in the balanced reaction.

Note: We are going for the lowest whole number Molar coefficient ratio

Finally, name the compounds and give physical states.

magnesium metal solid		oxygen gas	magnesium oxide solid ionic salt
$4 F e_{(s)}+$	3	$\mathrm{O}_{2(\mathrm{~g})} \longrightarrow$	$2 \mathrm{Fe}_{2} \mathrm{O}_{3}$
iron metal solid		oxygen gas	iron (III) oxide solid TM ionic sal

Combustion of methane gas

$$
\begin{array}{r}
\square \mathrm{CH}_{4}+\boxed{2} \mathrm{O}_{2} \longrightarrow \\
\text { Always balance oxygens last } \\
? \cdot \mathrm{O}_{2}=4
\end{array}
$$

Now balance the combustion of glucose (blood sugar)
$\stackrel{1}{1} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+\sqrt[6]{6} \mathrm{O}_{2} \longrightarrow \sqrt{6} \mathrm{CO}_{2}+\sqrt{6 \mathrm{H}_{2} \mathrm{O}}$

Ionic salt transfer reactions in aqueous solution $\mathrm{A}^{+} \mathrm{B}^{-}(\mathrm{aq})+\mathrm{C}^{+} \mathrm{D}^{-}(\mathrm{aq}) \quad \longrightarrow \mathrm{AD}(?)+\mathrm{BC}(?)$

Ionic salt solubility in water
All group I salts soluble, $\mathrm{Li}, \mathrm{Na}, \mathrm{K}$ All nitrate salts soluble All ammonium salts soluble, $\mathrm{NH}_{4}{ }^{+}$
you'll need to determine state based on some rules

Driving forces for ion transfer, a force that makes the reaction go.
Physical state formations:
If a solid forms
If a liquid forms
If a gas forms

Evidence for chemical change, Δ Color change (tricky) Heat evolved (tricky) precipitation saturation (solids) If a liquid forms (heat evolved) If a gas forms (bubbles, odor)

Ionic salt transfer reactions in aqueous solution $\mathrm{A}^{+} \mathrm{B}^{-}(\mathrm{aq})+\mathrm{C}^{+} \mathrm{D}^{-}(\mathrm{aq}) \quad \longrightarrow \mathrm{AD}(?)+\mathrm{BC}(?)$

Use of common sense tells us that, we will mix ionic solutions in order to have reaction occur. (we are not going to mix for the sake of mixing)

Use of common sense tells us that,
An acids mixed with a base (antacid) causes a neutralization.
$\mathrm{H}^{+} \mathrm{A}^{-}(\mathrm{aq})+\mathrm{M}^{+} \mathrm{OH}^{-}{ }_{(\mathrm{aq})} \longrightarrow \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}+\mathrm{MA}(?)$
Use of common sense tells us that, An acids mixed with carbonate $\left(\mathrm{HCO}_{3}^{-}\right)$produces CO_{2} water and salt $\mathrm{H}^{+} \mathrm{A}^{-}(\mathrm{aq})+\mathrm{NaHCO}_{3}(\mathrm{aq}) \longrightarrow \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}+\mathrm{NaA}_{(\mathrm{aq})}$ $\mathrm{CO}_{2}(\mathrm{~g})$

