Counting Atoms

How many iron atoms are present in $\mathbf{3 . 0 0}$ moles of iron metal?
$1 \mathrm{~mol} \mathrm{Fe}=55.85 \mathrm{~g} \mathrm{Fe}=6.02 \times 10^{3}$ atoms Fe

```
x atoms Fe = 3.00 mol Fe 1 mol Fe = 6.02 x 1023 atoms Fe
    x mol Fe = 3.00 mol Fe x \frac{6.02\times1023 atoms Fe}{1 mol Fe}=1.81\times1024 atoms Fe
```

Work out the following problems (show math set-ups)
\mathbf{x} atoms $\mathrm{S}=0.174 \mathrm{~mol} \mathrm{~S}$

How many sulfur atomsare present in $\mathbf{0 . 1 7 4}$ nioles of S nonmetal?
\mathbf{x} mol $\mathrm{K}=5.92 \times 10^{2}$ atoms K

How many moles of ${ }^{2}$ are presént in $5.92 \times 10_{6}^{24} \times 10^{24}$ atoms of K metal?

Let's go over this example together
How many atoms of C are present in $\mathbf{2 7 . 4}$ grams of
x atoms C $=27.4 \mathrm{~g} \mathrm{C}$

$$
\square 12.01 \mathrm{~g} \mathrm{C}=6.02 \times 10^{23} \text { atoms C }
$$

Combined we have a grams to particles equivalent statement
$27.4 \mathrm{~g} \mathrm{C} \mathrm{x} \frac{1 \mathrm{~mol} \mathrm{C}}{12.01 \mathrm{~g} \mathrm{C}} \times \frac{6.02 \times 10^{23} \text { atoms C }}{1 \mathrm{~mol} \mathrm{C}}=1.37 \times 10^{24}$ atoms C

(grams) x (mol per grams) Avogradro's number

moles
x

$$
\frac{6.02 \times 10^{23} \text { atoms }}{1 \text { mole }}
$$

Chemical Compounds

How many atoms are present in a formula unit of sodium sulfate $\mathrm{Na}_{2} \mathrm{SO}_{4}$?
Just as a mole of atoms is based on the atomic mass or atomic weight, a mole of a compound is based upon the formula mass or formula weight.

sodium sulfate, $\mathrm{Na}_{2} \mathrm{SO}_{4}$	
First:	How many atoms are there present per formula unit of $\mathrm{Na}_{2} \mathrm{SO}_{4}$? 7 atoms
Second:	What is the mass in amu of one molecule of sodium sulfate? 142.06 amu
Third:	What is the mass-in grams-of one mole of sodium sulfate? 12.06 g
Fourth:	How many moles of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ are in $16.0 \mathrm{~g} \mathrm{Na}_{2} \mathrm{SO}_{4}$? $1.13 \times 10^{-1} \mathrm{~mol}$

$\mathrm{Na}_{2} \mathrm{SO}_{4}$	2 Na
	1 S
	4 O
	7 atoms

$2 \mathrm{Na} \times 22.99=45.98$
$1 \mathrm{~S} \times 32.07=32.07$
$4 \mathrm{O} \times 16.00=\frac{64.00}{142.06 \mathrm{~g} \mathrm{Na}_{2} \mathrm{SO}_{4}}$
$\mathbf{x ~ m o l ~ N a} \mathrm{SO}_{4}=16.0 \mathrm{~g} \mathrm{Na}_{2} \mathrm{SO}_{4} \times \quad \frac{1 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{SO}_{4}}{142.06 \mathrm{~g} \mathrm{Na}_{2} \mathrm{SO}_{4}}=\frac{1.13 \times 10^{-1} \mathrm{~mol} \mathrm{Na}_{2} \mathrm{SO}_{4}}{}$

Molar Mass Calculations; one mole amount of a substance in grams

CH_{4}		$\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ This is called a pentahydrate	
$1 \mathrm{C} \times 12.0=12.0$		$1 \mathrm{Cu} \times 63.6=63.6$	
$4 \mathrm{Hx} 1.0=4.0$		$1 \mathrm{~S} \times 32.0=32.0$	
		$4 \mathrm{O} \times 16.0=64.0$	
		$5 \mathrm{H}_{2} \mathrm{O} \times 18.0=90.0$	
	ANS: 16.0		ANS: 249.6
$\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{Br}_{2}$		aluminum nitrate $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$	
$\left\lvert\, \begin{array}{lll} 3 \mathrm{Cx} \quad 12.0 & =36.0 \\ 5 \mathrm{HX} \quad 1.0 & =5.0 \\ 2 \mathrm{Br} \times 78.9 & =157.8 \end{array}\right.$		$1 \mathrm{Al} \times 27.0=27.0$	
		$3 \mathrm{~N} \times 15.0=45.0$	
		$90 \times 16.0=144.0$	
		Note you must be able to derive	
	ANS: 198.8	correct formulas from names	ANS: 216.0
$\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{OH}$		calcium dihydrogen phosphate$\mathrm{Ca}\left(\mathrm{H}_{2} \mathrm{PO}_{4}\right)_{2}$	
		$\mathrm{Ca}\left(\mathrm{H}_{2} \mathrm{PO}_{4}\right)_{2}$	
$\begin{array}{\|\|lllll} 3 \mathrm{C} \times 12.0 & = & 36.0 \\ 8 \mathrm{H} \times 1.0 & = & 8.0 \\ 1 \mathrm{O} \times 16.0 & = & 16.0 \end{array}$		$1 \mathrm{Cax} 40.1=40.1$	
		$4 \mathrm{Hx} 1.0=4.0$	
		$2 \mathrm{P} \times 31.0=62.0$	
		$80 \times 16.0=128.0$	
	ANS: 60.0		ANS: 234.1

Grams to Moles and Moles to Grams

How many moles are there in 41.7 g of NaNO_{3} ?

$$
1 \mathrm{~mol} \mathrm{NaNQ}_{3}=85.0 \mathrm{~g} \mathrm{NaNQ}
$$

$$
1 \mathrm{Na} 23.0=23.0
$$

$$
\text { In every calculuation problem ALWA. } \$ \times 14.0=14.0
$$

$$
\text { Caiculate moiar mass; MíA KE a Tabie and DiPiblar mass } \frac{48.0}{85.0 \mathrm{~g} / \mathrm{mol}}
$$

How many moles of calcium sulfate atoms are present in $\mathbf{1 2 . 6}$ grams of calcium sulfate ionic salt?

How many moles of ammonium carbonate are present in 6.18×10^{3} grams of ammonium carbonate ionic salt?

