Density

- A. The density of a substance is the ratio of mass to volume (grams per milliliters).
- B. Density is a characteristic property of a material and does not depend on sample size; intensive property.
- C. Density is temperature dependant.

Measuring an Object's Density

final volume: \qquad 1760. mL
initial volume: ------1380.- m L
volume of the bolt: -380 mL mass of the bolt: -378.8
density of the bolt. $0.997 \mathrm{~g} / \mathrm{mL}$
Set up:

Table 1	Diet Coke (DC)
Weight of full can (grams) (to the $1 / 100 \mathrm{~h}$ g)	378.84 g
Final Volume of water in graduate cylinder (mL)	$1760 . \mathrm{mL}$
Initial Volume of water in graduate cylinder (mL)	$\mathrm{D}=\frac{378.84 \mathrm{~g}}{380 . \mathrm{mL}}$
Volume of water displaced by full can (mL)	$3880 . \mathrm{mL}$
Weight of water displaced by full can (grams)	$380 . \mathrm{mL}$

An Adventure in Buoyancy

Our final hypothesis regarding why an object froats in aliquid

- An object floats when it overall mass is less than mass of the volume of liquid it displaces.
To validate our hypothesis, we must answer the following four questions
- What was the object's mass?
- What was the object's volume?

These two questions are related

- What volume of liquid was displaced by the object?
- What is the mass of the liquid displaced?

mass of object was 374.84 g
volume of can and volume of liquid displaced $=380 . \mathrm{mL}$ displaced liquid volume $=$ object volume
$\mathrm{H}_{2} \mathrm{O} \quad$ volume of can and volume of liquid displaced $=380 . \mathrm{mL}$

mass of water displaced? 380 g

Temperature Conversions

- ${ }^{\circ} \mathrm{F}=1.80\left({ }^{\circ} \mathrm{C}\right)+32$
- ${ }^{\circ} \mathrm{C}=\left({ }^{\circ} \mathrm{F}-32\right) \times 0.555$ memorize this one
- $\mathrm{K}=273+{ }^{\circ} \mathrm{C}$

To roughly convert ${ }^{\circ} \mathrm{F}$ to ${ }^{\circ} \mathrm{C}$, subtract 32 from ${ }^{\circ} \mathrm{F}$, then divide by 2 .

Complete this table for practice

${ }^{\circ} \mathrm{F}$	${ }^{\circ} \mathrm{C}$	K
$251{ }^{\circ} \mathrm{F}$		
	$198{ }^{\circ} \mathrm{C}$	
		298 K
	$-16{ }^{\circ}{ }^{\circ} \mathrm{C}$	
		233 K

Conversion Answers

${ }^{\circ} \mathrm{F}$	${ }^{\circ} \mathrm{C}$	K
251	122	395
388.4	198	471
77	25	298
451	233	506
3.2	-16	257
-40	-40	233

