Dimensional Analysis Problem Solving

Goals:

- under standing what equals, "=" , means; the equal sign means "the same as";
- identifying conversion "equivalent" statements used in Factor-Label Method Approach to Dimensional Analysis Problem Solving
- Performing Dimensional Analysis Problem Solving

Lets work out the dimensional analysis problems in the supplement packet togehter
a.

$$
? \times k g=420 \mathrm{~g} \times \square=
$$

\qquad
b.

d.
$? \times \mathrm{nnm}=2660 \mu \mathrm{~m} \times \square=$
$? ? \times 10-0.75 \mathrm{mo} \times \square \times-$
\qquad

$$
? \mathrm{~kg}=420 \mathrm{~g}
$$

How many kilograms are the same as 420 grams?
In other words, convert 420 grams to kilograms

1. Begin by writing down conversion factors and their ratios.
$1 \mathrm{~kg}=10^{3} \mathrm{~g} \quad \frac{10^{3} \mathrm{~g}}{1 \mathrm{~kg}}$ or $\frac{1 \mathrm{~kg}}{10^{3} \mathrm{~g}}$
2. Choose conversion factors that cancels the units we want to discard and leaves the units we want in the result
$? \mathrm{~kg}=420 \mathrm{~g} \mathrm{x} \frac{1 \mathrm{~kg}}{10^{3} \boldsymbol{\rho}}=4.2 \times 10^{-1} \mathrm{~kg}$

$? \mathrm{Mg}=0.000719 \mathrm{~g}$

How many Megagrams are the same as 0.000719 grams?
In other words, convert 0.000719 grams to Megagrams.

1. Begin by writing down conversion factors and their ratios.
$1 \mathrm{Mg}=10^{6} \mathrm{~g} \quad \frac{10^{6} \mathrm{~g}}{1 \mathrm{Mg}}$ or $\frac{1 \mathrm{Mg}}{10^{6} \mathrm{~g}}$
2. Choose conversion factors that cancels the units we want to discard and leaves the units we want in the result
? $\mathrm{Mg}=0.000719 \varnothing \times \frac{1 \mathrm{Mg}}{10^{6} \sigma}=7.19 \cdot 10^{-10} \mathrm{Mg}$
$? \mathrm{cL}=22.6 \mathrm{ML}$
How many Megaliters are the same as 22.6 centiliters?
In other words, convert 22.6 centiliters to Megaliters.
3. Begin by writing down conversion factors and their ratios.

$1 \mathrm{ML}=10^{6} \mathrm{~L}$	$\frac{10^{6} \mathrm{~L}}{1 \mathrm{ML}}$	or	$\frac{1 \mathrm{ML}}{10^{6} \mathrm{~L}}$
$1 \mathrm{CL}=10^{-2} \mathrm{~L}$	$\frac{10^{-2} \mathrm{~L}}{1 \mathrm{cL}}$	or	$\frac{1 \mathrm{cL}}{10^{-2} \mathrm{~L}}$

2. Choose conversion factors that cancels the units we want to discard and leaves the units we want in the result
$? \mathrm{cL}=22.6 \not \mathrm{AL} \times \frac{10^{6} \not \mathrm{~L}}{1 \not \mathrm{HL}} \times \frac{1 \mathrm{cL}}{10^{-2} \not \swarrow}=2.26 \mathrm{EE} 9 \mathrm{cL}$
$? \mathrm{~nm}=2260 \mu \mathrm{~m}$
How many nanometer are the same as 2260 micrometers?
In other words, convert 2260 micrometers to nanometers.
3. Begin by writing down conversion factors and their ratios.

$1 \mu \mathrm{~m}=10^{-6} \mathrm{~m}$	$\frac{10^{-6} \mathrm{~m}}{1 \mu \mathrm{~m}}$ or	$\frac{1 \mu \mathrm{~m}}{10^{-6} \mathrm{~m}}$	
$1 \mathrm{~nm}=10^{-9} \mathrm{~m}$	$\frac{10^{-9} \mathrm{~m}}{1 \mathrm{~nm}}$	or	$\frac{1 \mathrm{~nm}}{10^{-9} \mathrm{~m}}$

2. Choose conversion factors that cancels the units we want to discard and leaves the units we want in the result
$? \mathrm{~nm}=2660$ य月t $\times \frac{10^{-6} \mathrm{nt}}{1 \mu \mathrm{mt}} \times \frac{1 \mathrm{~nm}}{10^{-9} \mathrm{nt}}=2.66 \mathrm{EXP} 6 \mathrm{~nm}$
? $\mathrm{ds}=0.75 \mathrm{~ms}$
How many deciseconds are the same as 0.75 milliseconds?
In other words, convert 0.75 milliseconds to deciseconds.
3. Begin by writing down conversion factors and their ratios.

$1 \mathrm{~ms}=10^{-3} \mathrm{~s}$	$\frac{10^{-3} \mathrm{~s}}{1 \mathrm{~ms}}$	or $\frac{1 \mathrm{~ms}}{10^{-3} \mathrm{~s}}$
$1 \mathrm{ds}=10^{-1} \mathrm{~s}$	$\frac{10^{-1} \mathrm{~s}}{1 \mathrm{ds}}$	or
$\frac{1 \mathrm{ds}}{10^{-1} \mathrm{~s}}$		

2. Choose conversion factors that cancels the units we want to discard and leaves the units we want in the result
$? \mathrm{ds}=0.75 \mathrm{~ms} \times \frac{10^{-3} 8}{1 \mathrm{mb}} \times \frac{1 \mathrm{ds}}{10^{-1} \mathrm{~s}}=7.5 \cdot 10^{-3} \mathrm{ds}$

Think Metric... or Else!

Memorize these equivalent statements for English to Metric conversions

Lets work out the dimensional analysis problems in the supplement packet togehter


```
5!1 N人1/48
```


\qquad

```
<二v |隹 3y % .............. v
                        \
{
    ッチツ%ジ% - ............. x ..............
```

\qquad
$? \mathrm{~kg}=7.71 \times 10^{-7} \mathrm{lbs}$
How many kilograms are the same as 7.71×10^{-7} pounds？
In other words，convert 7.71×10^{-7} pounds to kilograms．
1．Begin by writing down conversion factors and their ratios．

$1 \mathrm{lbs}=454 \mathrm{~g}$	$\frac{454 \mathrm{~g}}{}$	or	1 lbs
$1 \mathrm{~kg}=10^{3} \mathrm{~g}$	$\frac{1 \mathrm{bs}}{3} \mathrm{~g}$	or	$\frac{15 \mathrm{~g}}{1 \mathrm{~kg}}$
1 kg		$10^{3} \mathrm{~g}$	

2．Choose conversion factors that cancels the units we want to discard and leaves the units we want in the result
$? \mathrm{~kg}=7.71 \times 10^{-7} \mathrm{HJs} \times \frac{454 \mathrm{~g}}{1 \mathrm{ybs}} \times \frac{1 \mathrm{~kg}}{10^{3} \mathrm{~g}}=3.50 \times 10^{-7} \mathrm{~kg}$
$? \mathrm{dm}=8.1 \times 10^{3}$ inches
How many decimeters are the same as 8.1×10^{3} inches? In other words, convert 8.1×10^{3} inches to decimeters.

1. Begin by writing down conversion factors and their ratios.

1 inch $=2.54 \mathrm{~cm}$	2.54 cm	or
	$\frac{1 \text { inch }}{}$	$\frac{1 \text { inch }}{2.54 \mathrm{~cm}}$
$1 \mathrm{~cm}=10^{-2} \mathrm{~m}$	$\frac{10^{-2} \mathrm{~m}}{1 \mathrm{~cm}}$	or
$1 \mathrm{dm}=10^{-1} \mathrm{~m}$	$\frac{10^{-1} \mathrm{~m}}{10^{-2} \mathrm{~m}}$	
	or	$\frac{1 \mathrm{dm}}{10^{-1} \mathrm{~m}}$

2. Choose conversion factors that cancels the units we want to discard and leaves the units we want in the result
$? \mathrm{dm}=8.1 \times 10^{3}$ inehes $\times \frac{2.54 \mathrm{smt}}{1 \mathrm{ith}} \times \frac{10^{-2} \mathrm{~m}}{1 \mathrm{em}} \times \frac{1 \mathrm{dm}}{10^{-1} \mathrm{~m}}=2.1 \cdot 10^{3} \mathrm{dm}$
$? \mathrm{~g}=136 \mathrm{lbs}$
How many grams are the same as 136 pounds?
In other words, convert 136 pounds to grams.
3. Begin by writing down conversion factors and their ratios.
$1 \mathrm{lbs}=454 \mathrm{~g} \quad \frac{454 \mathrm{~g}}{1 \mathrm{lbs}}$ or $\frac{1 \mathrm{lbs}}{454 \mathrm{~g}}$
4. Choose conversion factors that cancels the units we want to discard and leaves the units we want in the result
$? \mathrm{~g}=136 \mathrm{HbS} \quad \mathrm{x} \frac{454 \mathrm{~g}}{1 \mathrm{LbS}}=6.17 \mathrm{EE} 4 \mathrm{~g}$

$? \mathrm{cL}=6.70 \times 10^{4} \mathrm{qt}$

How many centiliters are the same as 6.70×10^{4} quarts?
In other words, convert 6.70×10^{4} quarts to centiliters.

1. Begin by writing down conversion factors and their ratios.

$1 \mathrm{qt}=0.946 \mathrm{~L}$
$\frac{0.964 \mathrm{~L}}{1 \mathrm{gt}}$

2. Choose conversion factors that cancels the units we want to discard and leaves the units we want in the result

$$
? \mathrm{cL}=6.70 \times 10^{4} \text { Дt } \times \frac{0.946 \npreceq}{1 \not 2} \times \frac{1 \mathrm{cL}}{10^{-2} \not \swarrow}=6.34 \mathrm{EXP} 6 \mathrm{cL}
$$

