Structure, Polarity & Physical Properties

Supplemental packet handouts 92-96

molecules. Molec	cules act as discre	ete units		g
Diatomic Compound	Nitro	ogen, N ₂	Oxygen, O ₂	Hydrogen, H ₂
Atmospheric Abundar	nce _	~80%	~20%	_ trace
Lewis Structure	-	: N = N:		- H-H
Bonding	_ 1	riple bond	double bond	d _ single bond
Stability	-	inert s	supports combus	tion explosive
Stability Why is there such a g The order o Stability is o Bond energy	reat difference in f stability directly re	inert s reactivity (stability) ar often parallel lated to bond	supports combus	tion explosive ; 3, 2, 1.
Stability Why is there such a g The order o Stability is o Bond energ a bond hold	reat difference in f stability directly re y is define	inert s reactivity (stability) ar often parallel lated to bond ed as the amou com together	supports combus mong these gases? Is the bond order energy. unt of energy rec	tion explosive ; 3, 2, 1. quired to break
Stability Why is there such a g The order o Stability is o Bond energ a bond hold	reat difference in f stability directly re y is define ing two at	inert s reactivity (stability) ar often parallel lated to bond ed as the amou com together. triple bor	supports combus mong these gases? Is the bond order energy. unt of energy rec nd > double bonc	tion explosive ; 3, 2, 1. quired to break 1 > single bond
Stability Why is there such a g The order o Stability is o Bond energ a bond hold	reat difference in f stability directly re y is define ing two at Bond orde	inert s reactivity (stability) ar often parallel lated to bond ed as the amou com together. triple bor er 3	supports combus mong these gases? Is the bond order energy. unt of energy rec nd > double bonc 2	tion explosive ; 3, 2, 1. quired to break 1 > single bond 1

Molecular Compound	Methane, CH ₄	hydrosulfuric acid, H ₂ S	Water, H ₂ O
Lewis Structure	H H H	й—я: 	
geometry	tetrahedral	<u>bent</u>	bent
polarity	nonpolar_	polar_	polar_
intermolecular force of attraction	dispersion force_	dipole-dipole force	hydrogen nonbonding force
physical state @ 25°C	gas	<u>gas</u>	liquid_

III. Le	wis S	Structure and Polarity					
A. Bo	ond Polarity - Shared electrons in a covalent bond show:						
1.	equal sharing between two bonding atoms						
2.	unequal sharing between two bonding atoms.						
	a. For unequal sharing, the electrons are attracted to the more electronegative atom.						
	b. A division is created in manner that the bond behaves as a bond dipole, like a bar magnet						
	(two "poles" or ends, one more negative and the other more positive.)c. the polar covalent bond division is represented by d+ and d- partial charges						
		water, H_2O hydrochloric acid, HCl hydrogen gas, H_2 + $H - OH - + H - Cl - $ equal but opposite + $-$ + $-$ + $-$ + $ -$					
		N S N S N S N S					

View the physical properties powerpoint