Measured Values and Significant Figures
 Dr. Gergens - SD Mesa College

- Goals:
- Metric prefixes (k, c, m)
- Exponential notation ($\mathrm{N} \cdot 10^{\mathrm{x}}$)
- Handling "uncertainty in numbers"
- Significant Figures
- Measurements 1 in $=\ldots \mathrm{cm} ; 1 \mathrm{qt}=\ldots \mathrm{L} ; 1 \mathrm{lb}=\ldots \mathrm{g}$
- Dimensional Analysis
....and measurements will have to be made!!!!
Measurements - a system or way of gathering numerical values-size, extent, quantity, dimension-using a measuring device.
A. Accuracy: the degree to which a measured value is close to the true value.
B. Precision: the degree to which a "set" of measured values agree with each other.

Compare the weigthed average of the "x's" to the value " T " which represents the true value. Decide which of the measurement is accurate, precise, both accurate and precise or neither.

precise
but
inaccurate

precise \& accurate

inaccurate but by chance; the result of the average of the three x 's
will be accurate

A. Metric Prefixes

PREFIX	SYMBOL	DECIMAL EQUIVALENT	POWER OF BASE 10
mega			
kilo	1 k	1000	10^{3} or E 3
deci	1		I
centi	${ }_{1} \mathrm{c}$	0.01	$\mathrm{c}=$? ? ?
milli	Im	0.001	10-s or E-3 ।
micro	----	-----	-----
nano		ly memor	these
$10=10^{1}=\mathrm{E} 1$			
$10^{1} \cdot 10^{1} \cdot 10^{1}=1000=\mathrm{E} 3$			

$\frac{1}{10^{1}} \cdot \frac{1}{10^{1}} \cdot \frac{1}{10^{1}}=\frac{1}{1000}=0.001=\mathrm{E}-3$
supplemental HO 18

B. Scientific (Exponential)

- Notation Form - a short hand device used for expressing very large numbers or very small numbers. Extra help is usually given in the back of your book in the appendix

N x 10^{x}
$\mathrm{N}=$ a number between 1 and 10

8069 using scientific (exponential) notation
8069 can be written as 8.069×10^{3} or 8.069 E 3

A closer look at moving the decimal point

80.6.9. can be written as 8.069×10^{3} or 8.069 E 3

Moving the decimal to the left affords a positive E value
$806.9 \times 10^{1} \quad 806.9$ E 1
$80.69 \times 10^{2} \quad 80.69$ E 2
$8.069 \times 10^{3} \quad 8.069 \mathrm{E} 3$
supplemental HO 18
C. Multiplication of Exponents

- $\left(\mathrm{M} \mathrm{x} 10^{\mathrm{m}}\right)\left(\mathrm{N} \times 10^{\mathrm{n}}\right)=(\mathrm{MN}) \times 10^{\mathrm{m}+\mathrm{n}}$
- $\left(5 \times 10^{5}\right)\left(9 \times 10^{8}\right)=(5) \cdot(9) \times 10^{5+8}$

$$
=45_{i} \times 10^{13} \text { or } 4.5 \times 10^{14}
$$

- $\left(5 \times 10^{5}\right)\left(9 \times 10^{-8}\right)=(5) \bullet(9) \times 10^{5-8}$

$$
=45 . \times 10^{-3} \text { or } 4.5 \times 10^{-2}
$$

C. Measured Values And Significant Figures:

reading $=12.7 \pm 0.1$
12.6, 12.7, 12.8乌

reading $=11.135 \pm 0.001$
most reliable scale least uncertainty
highest uncertainty
reading $=11.22 \pm 0.01$
more reliable scale lower uncertainty
least reliable scale

How then do we go about citing degree of confidence in a measurement?

We will do this by describing measurements in terms of significant figures.

Thus we will need to memorize the rules for significant figures.

Rules of Counting Significant Figures 8069 has a total of four significant figures

1. ALL non-zero digits in a number are significant.

8069 8, 6, 9 are significant
2. Captive zeros - zeros located between nonzero digits are significant.

80690 is significant
3. Trailing zeros - zero at the end of a number having a decimal point are significant
there are none
4. Leading zeros - zeros that serve only to locate the position of the decimal point. Place holder preceding are NOT significant.
there are none

Rules of Counting Significant Figures

2.54 has a total of three significant figures

1. ALL non-zero digits in a number are significant.
2.54 the 2, 5, 4 are significant
2. Captive zeros - zeros located between nonzero digits are significant.
there are none
3. Trailing zeros - zero at the end of a number having a decimal point are significant
there are none
4. Leading zeros - zeros that serve only to locate the position of the decimal point. Place holder preceding are NOT significant.
there are none

Rules of Counting Significant Figures

10.21 has a total of four significant figures

1. ALL non-zero digits in a number are significant.

$$
10.21 \quad 1,2,1 \text { are significant }
$$

2. Captive zeros - zeros located between nonzero digits are significant.

10.210 is significant

3. Trailing zeros - zero at the end of a number having a decimal point are significant
there are none
4. Leading zeros - zeros that serve only to locate the position of the decimal point. Place holder preceding are NOT significant.
there are none

5. ALL non-zero digits in a number are significant. 10000 the 1 is significant
6. Captive zeros - zeros located between nonzero digits are significant. there are none
7. Trailing zeros - zero at the end of a number having a decimal point are significant
None; the number doesn't have a decimal pt
8. Leading zeros - zeros that serve only to locate the position of the decimal point. Place holder preceding are NOT significant. None
supplemental HO 19

Rules of Counting Significant Figures

8.00×10^{-3} has a total of three significant figures

1. ALL non-zero digits in a number are significant. 8.00×10^{-3} the 8 is significant
2. Captive zeros - zeros located between nonzero digits are significant. there are none
3. Trailing zeros - zero at the end of a number having a decimal point are significant the two 0's after the decimal are significant
4. Leading zeros - zeros that serve only to locate the position of the decimal point. Place holder preceding are NOT significant.
None

Rules of Counting Significant Figures

1 is definitely exact		12 is exact as defined by
1 is definitely exact		this equivalence statement

$1 \mathrm{in}=2.54 \mathrm{~cm}$
These are exact numbers. Exact numbers are not limited to a given number of sig figs.

Exact numbers have an infinite number of significant figures
12.000
1.00

Let's Check Our Work			
\# of Sig Figs	exponential notation	round off to 3 sig figs	
a. 800003	6	8.00003×10^{5}	8.00×10^{5}
b. 1.21	3	1.21×10^{0}	1.21×10^{0}
c. 149700 "assume'	4	1.497×10^{5}	1.50×10^{5}
d. 14.000	5	1.4000×10^{1}	1.40×10^{1}
e. 0.03995	4	3.995×10^{-2}	4.00×10^{-2}
f. 9.999×10^{3}	4	9.999×10^{3}	$10.0 \times 10^{3}=1.00 \times 10^{4}$

Let's Check Our Work			
-			
measurement	exponential notation	fundamental unit	Sig Figs
a. 7070.0 mg	$7.0700 \times 10^{3} \mathrm{mg}$	7.0700 g	5
b. 10.21 nm	$1.021 \times 10^{1} \mathrm{~nm}$	$1.021 \times 10^{-8} \mathrm{~m}$	4
c. 1497.00 ds	$1.49700 \times 10^{3} \mathrm{ds}$	$1.49700 \times 10^{2} \mathrm{~s}$	6
d. 14.000 cL	$1.4000 \times 10^{1} \mathrm{cL}$	$1.4000 \times 10^{-1} \mathrm{~L}$	5
e. $0.03995 \mu \mathrm{~L}$	$3.995 \times 10^{-2} \mu \mathrm{~L}$	$3.995 \times 10^{-8} \mathrm{~L}$	4
f. 0.0009999 Mg	$9.999 \times 10^{-4} \mathrm{Mg}$	$9.999 \times 10^{2} \mathrm{~g}$	4

Handling Sig Figs when doing math

When multiplying or dividing, the number of significant figures in the result cannot exceed the least known number of significant figures in the problem.

Handling Sig Figs when doing math

For addition and substraction, the final answer should be rounded off to the first "common place"

For addition and substration - the limiting term in the measurement will be the smallest number of digits past the decimal place

supplemental HO 21

Factor Label Method

The basic idea is that multiplying a quantity times a fraction (or several fractions) that equal one does not change the value of the quantity but may change the units that express the quantity.
Based on the following mathematical principles:

1. Multiplying any quantity by 1 does not change its value:

2. Dividing any quantity by itself is equal to 1.
$\frac{4}{4}=1 \quad \frac{3 \text { apples }}{3 \text { apples }}=1 \quad \frac{\mathrm{z} \mathrm{cm}}{\mathrm{Z} \mathrm{cm}}=1$
3. Any two quantities that are equal to one another, when made into a fraction give 1.

$$
4=4 \therefore 4 / 4=1 \quad 1 \text { foot }=12 \text { inches } \therefore \frac{1 \text { foot }}{12 \text { inches }}=1 \text { and } \frac{12 \text { inches }}{1 \text { foot }}=1
$$

Writing metric equivalent statements:

1. Always make the metric prefix equal to the numerical value of the fundamental unit:

2. The above equivalent statements can lead to either of two conversion
factors:
$\frac{1 \mathrm{~kg}}{10^{3} \mathrm{~g}}$ or $\frac{10^{3} \mathrm{~g}}{1 \mathrm{~kg}} \quad \frac{1 \mathrm{mg}}{10^{-3} \mathrm{~g}}$ or $\frac{10^{-3} \mathrm{~g}}{1 \mathrm{mg}}$
3. Which conversion factor shall we use? The one that cancels the unwanted labels (units) and gives the desired label.
Example: Convert 50 grams to milligrams: $x \mathrm{~kg}=50 \mathrm{~g}$
$x \mathrm{~kg}=50 \mathrm{~g} \times \frac{1 \mathrm{~kg}}{10^{3} \mathrm{~g}}=5 \times 10^{-2} \mathrm{~kg} \quad$ NOT $\quad x \mathrm{~kg}=50 \mathrm{~g} \times \frac{10^{3} \mathrm{~g}}{1 \mathrm{~kg}}=5 \times 10^{4} \frac{\mathrm{~g}^{2}}{1 \mathrm{~kg}}$

Charlie Brown Handơulemental Ho 22

- Applying sigfigs and metric conversion

CARTOON CORNER

Discussion questions

1. The referee is really upset with the metric system. What length of race was he anticipating?
2. Complete the equivalent statement 1 mile $=1.6093$ kilometers
3. a. What is the distance of a $10-\mathrm{K}$ run in miles?
b. What is this distance in feet?

$$
\text { 10. } \mathrm{km} \times \frac{1 \mathrm{mile}}{1.6093 \mathrm{~km}}=6.2 \text { miles }
$$

4. If a runner is capable of running a five minute mile,
a. how many miles can he travel in one hour?
b. What is this speed in idiometers per hour?
$\frac{1 \text { mile }}{5 \min } \times \frac{60 \text { min }}{1 \text { hour }}=\frac{12 \text { miles }}{1 \text { hour }} \times$
IN THE BLEACHERS By Steve Mocre

"Wait, woitt! We might have a problem here . . blast this metric system!"
$\frac{1.6093 \mathrm{~km}}{1 \text { mile }}=19 \mathrm{~km}$

supplemental HO 23
 Conversions

1. How many centimeters is equal to 45.7 mm? We could write this mathematically as, ????? $\mathrm{cm}=45.7 \mathrm{~mm}$

We begin by writing down what we know. We know that $1 \mathrm{~mm}=10^{-3} \mathrm{~m}$ and $1 \mathrm{~cm}=10^{-2} \mathrm{~m}$. $\quad 1 \mathrm{~cm}=10^{-2} \mathrm{~m}$
factor labels

Arrange the factor-label labels so units will cancel.
???? $\mathrm{cm}=45.7 \mathrm{~mm} \times \frac{10^{-3} \mathrm{~m}}{1 \mathrm{~mm}} \times \frac{1 \mathrm{~cm}}{10^{-2} \mathrm{~m}}=4.57 \mathrm{~cm}$

