Measured Values and Significant Figures Dr. Gergens - SD Mesa College

- Goals:
- Metric prefixes (k, c, m)
- Exponential notation (N 10^x)
- Handling "uncertainty in numbers"
- Significant Figures
- Measurements 1 in =__cm; 1qt = __L; 1lb =__g
- Dimensional Analysis

	# of Sig Figs	exponential notation	round off to 3 sig figs
a. 800003	6	8.00003 x 10 ⁵	8.00 x 10 ⁵
b. 1.21	3	1.21 x 10 ⁰	1.21 x 10 ⁰
c. 149700 "assume"	4	1.497 x 10 ⁵	1.50 x 10 ⁵
d. 14.000	5	1.4000 x 10 ¹	1.40 x 10 ¹
e. 0.03995	4	3.995 x 10 ⁻²	4.00 x 10 -2
f. 9.999 x 10°	4	9.999 x 10 ³	$10.0 \times 10^3 = 1.00 \times 10^4$

measurement	exponential notation	fundamental unit	↓ # of Sig Figs
a. 7070.0 mg	7.0700 x 10 ³ mg	7.0700 g	5
b. 10.21 nm	1.021 x 10 ¹ nm	1.021 x 10 ⁻⁸ m	4
c. 1497.00 ds	1.49700 x 10 ³ ds	1.49700 x 10 ² s	6
d. 14.000 cL	1.4000 x 10 ¹ cL	1.4000 x 10 ⁻¹ L	5
e. 0.03995 μL	3.995 x 10 ⁻² μL	3.995 x 10 ⁻⁸ L	4
f. 0.0009999 Mg	9.999 x 10 ⁻⁴ Mg	9.999 x 10 ² g	4

(7.0700 x E3) x Emeasurement exponential notation fundamental u a. 7070.0 mg 7.0700 x 10⁻³ mg 7.0700 g 5 b. 10.21 nm 1.021 x 10⁻¹ nm 1.021 x 10⁻⁸ m 4 c. 1497.00 ds 1.49700 x 10⁻³ ds 1.49700 x 10² s 6 1.4000 x 10 ⁻¹ L d. 14.000 cL 1.4000 x 10⁻¹ cL 5 e. 0.03995 mL 3.995 x 10⁻² mL 3.995 x 10 ⁻⁸ L 4 f. 0.0009999 Mg 9.999 x 10⁻⁴ Mg 9.999 x 10² g 4 -3 = 7.0700 x 10⁻³ mg = 7.0700 g $7.0700 \times 10^{-3} \times 10^{-3} = 7.0700 \text{ g}$