Stoichiometry (mole to mole conversions)Supplemental Packet p 129-130

There are seven skills which the student must master before performing stoichiometric calculations.
1.Using the periodic table, a student should be able to name and write chemical formulas correctl
2. Write a balanced chemical equation
3.Calculate molar mass to at least one digit past the decimal place.
4.To convert mass to moles
5.To convert moles to mass.
6.To convert between moles of reactants and moles of products using mole ratios from the balanced chemica equation.
7.Determine the limiting reagent.
3.Calculate molar mass and place each molar mass underneath

Methane gas is burned in excess oxygen to produce carbon dioxide \& wate If 25.0 grams of methane is burned how many grams of water is produced 1.balance the reaction
2.calculate molar mass

grams	25.0	excess	$?$	$?$
	$1 \mathrm{CH}_{4}(\mathrm{~g})$	$+\underline{2} \mathrm{O}_{2}(\mathrm{~g})$	$---\cdots--->$	$\underline{2} \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
$\mathrm{MM}(\mathrm{g} /$ mole $)$	16.0	32.0	$1 \mathrm{CO}_{2}(\mathrm{~g})$	
moles	1.56	excess	18.0	44.0
3			$?$	$?$

3.make a table
grams
$\mathrm{A}_{2}--->2 \mathrm{~A}$ (balanced reaction)
MM
moles
4.complete the table
4. From the original equation, place the given masses of starting materials or products above the corresponding reagent and a question mark for the information you are seeking.
The term excess means you have enough reagent for complete reaction.

Complete the table by first calculating moles $\mathrm{H}_{2} \mathrm{O}$ and moles CO_{2}				
grams	25.0	excess	?	?
	$1 \mathrm{CH}_{4}$	$+\underline{2} \mathrm{O}_{2}(\mathrm{~g})$	$\underline{2} \mathrm{H}_{2} \mathrm{O}$ (1)	$+1 \mathrm{CO}_{2}(\mathrm{~g})$
MM (g/mole) moles	16.0	32.0	18.0	44.0
	1.56	excess	moles $\mathrm{H}_{2} \mathrm{O}$?	moles CO_{2} ?

moles 1.56 moles $\mathrm{CH}_{4} \quad$ x $\frac{2 \text { moles } \mathrm{H}_{2} \mathrm{O}}{1 \text { mole } \mathrm{CH}_{4}}=3.125$ moles $\mathrm{H}_{2} \mathrm{O}$
moles $\quad 1.56$ moles $\mathrm{CH}_{4} \quad \mathrm{x} \quad \underline{1 \text { moles } \mathrm{CO}_{2}} \quad=1.56$ moles CO_{2} $1 \mathrm{~mole}_{\mathrm{CH}}^{4}$
4. From the original equation, place the given masses of starting materials or products above the corresponding reagent and a question mark for the information you are seeking.
The term excess means you have enough reagent for complete reaction.

Using the moles $\mathrm{H}_{2} \mathrm{O}$ and moles CO_{2}, calculate grams of $\mathrm{H}_{2} \mathrm{O}$ and CO_{2}					
grams	25.0	excess	$?$	$?$	
	$1 \mathrm{CH}_{4}(\mathrm{~g})$	$+\underset{2}{2} \mathrm{O}_{2}(\mathrm{~g})$	$------>$	$\underline{2} \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$	$+1 \mathrm{CO}_{2}(\mathrm{~g})$
$\mathrm{MM}(\mathrm{g} / \mathrm{mole})$	16.0	32.0	18.0	44.0	
moles	1.56	excess	3.125	1.56	

moles $\quad 1.56$ moles $\mathrm{CH}_{4} \quad \mathrm{x} \quad \underline{2 \text { moles } \mathrm{H}_{2}} \underline{\mathrm{O}}=3.125$ moles $\mathrm{H}_{2} \mathrm{O}$ $1 \mathrm{~mole}_{\mathrm{CH}}^{4}$
moles 1.56 moles $\mathrm{CH}_{4} \quad \mathrm{x} \quad 1$ moles $\mathrm{CO}_{2} \quad=1.56$ moles CO_{2} $1 \mathrm{~mole}_{\mathrm{CH}}^{4}$
4. From the original equation, place the given masses of starting materials or products above the corresponding reagent and a question mark for the information you are seeking.
The term excess means you have enough reagent for complete reaction.

4. From the original equation, place the given masses of starting materials or products above the corresponding reagent and a question mark for the information you are seeking.
The term excess means you have enough reagent for complete reaction.
And Your Done!!!!!

