Before starting the lab:

Write a purpose for the lab, write in your safeties after your purpose, record these procedures, balance and name the substances in each reaction and diagram the set-up for the battery into your notes.

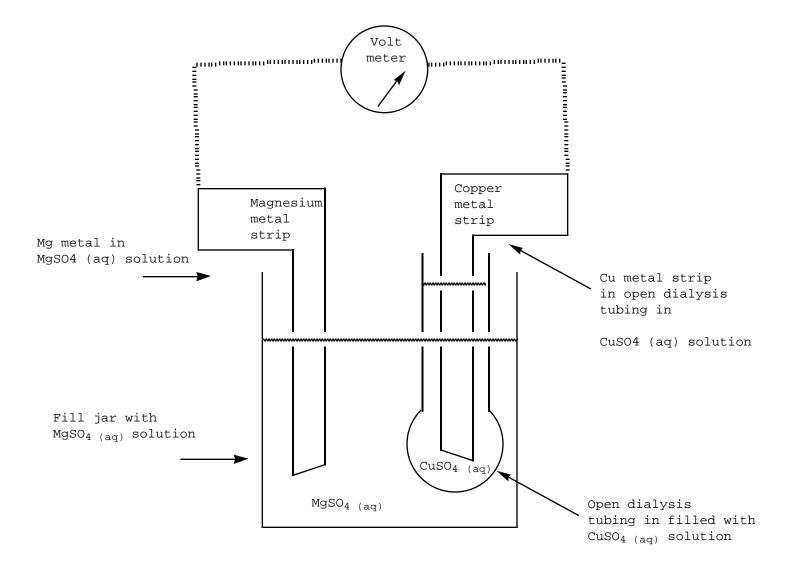
Safeties

- 1) $AgNO_{3 (aq)}$, silver (I) nitrate will OXIDIZE your skin. Don't get it on your skin and if you do wash immediately with plenty of water.
- 2) Pb(NO₃)_{2 (aq)} lead (II) nitrate contains lead (II) ions; wash your hands before leaving the lab. Don't get it on your skin and if you do wash immediately with plenty of water.
- 3) H_2SO_4 (aq) sulfuric acid is a strong acid and it will burn your skin. Don't get it on your skin and if you do wash immediately with plenty of water.

Procedure:

- · Review Safeties first
- Prepare six test tubes each with 2 cm high of corresponding liquids solution.
- Place in each test tube the corresponding metal and record your observations in the first minutes.
- Let each test tube 15 minutes and record your observations after 15 minutes.
- Prepare per diagram the battery on the next page and measure the voltage.

Balance these reactions AND NAME ALL substances.


Test TUBE 1. Cu
$$(s)$$
 + AgNO₃ (aq) ----> Cu(NO₃) $_2$ (aq) + Ag (s)

Test TUBE 2 Pb
$$_{(S)}$$
 + Cu(NO₃) $_{2 (aq)}$ ----> Pb(NO₃) $_{2 (aq)}$ + Cu $_{(S)}$

Test TUBE 3
$$Zn_{(s)}$$
 + $Pb(NO_3)_{2 (aq)}$ ----> $Zn(NO_3)_{2 (aq)}$ + $Pb_{(s)}$

Test TUBE 4
$$Zn_{(s)}$$
 + $MgSO_{4 (aq)}$ ----> $ZnSO_{4 (aq)}$ + $Mg_{(s)}$

Test TUBE 6
$$Zn_{(s)} + H_2SO_{4_{(aq)}} ----> ZnSO_{4_{(aq)}} + H_{2_{(g)}}$$

This is what is going to happen

- 1) ${\rm Mg}^0_{({\rm s})}$ will be oxidized to ${\rm Mg}^{2+}_{({\rm aq})}$ plus two electrons ${\rm Mg}_{({\rm s})} \longrightarrow {\rm Mg}^{2+}_{({\rm aq})} + 2 {\rm e}^-$
- 2) $\operatorname{Cu}^{2+}_{(\operatorname{aq})}$ plus two electron will be reduced to $\operatorname{Cu}_{(\operatorname{s})}$ metal

$$Cu^{2+}_{(aq)}$$
 + $2e^{-}$ $Cu_{(s)}$

OVERALL

Mg should dissolve and the copper metal strip should grow in size

$$Cu^{2+}_{(aq)}$$
 + $Mg_{(s)}$ \longrightarrow $Mg^{2+}_{(aq)}$ + $Cu_{(s)}$