Due May 10, 2011 Math 281 - Quiz 9 Name: ________________

Outside help permitted.

1. Evaluate \(\int_{C_1} \mathbf{F} \cdot d\mathbf{r} \) where \(\mathbf{F}(x, y) = (y^2 + 1, 2xy) \) and \(C_1 \) is defined by \(x = 1 - \cos t, \ y = \sin t, \) \(0 \leq t \leq \pi, \) by three methods:

 a. Directly, without using that \(\mathbf{F} \) is a conservative vector field.

 \[
 \int_{C_1} \mathbf{F} \cdot d\mathbf{r} = \int_0^\pi \left(y^2 + 1 \right) dx + 2xy dy = \int_0^\pi \left[(\sin^2 t + 1) \sin t + 2(1 - \cos t) \sin t \cos t \right] dt
 \]

 \[
 = \int_0^\pi \left[1 - \cos^2 t + 1 + 2 \cos t - 2 \cos^2 t \right] \sin t dt = \int_0^\pi (-\cos^2 t + 2 \cos t + 2) \sin t dt
 \]

 \[
 = \int_0^\pi (3 \cos^2 t - 2 \cos t - 2) d(\cos t) = \left[\cos^3 t - \cos^2 t - 2 \cos t \right]_0^\pi
 \]

 \[
 = (-1 - 1 + 2) - (1 - 1 - 2) = 2
 \]

 b. Find a function \(f \) such that \(\nabla f = \mathbf{F}, \) then use the Fundamental Theorem of Line Integrals.

 \(f_x(x, y) = y^2 + 1 \) \(\Rightarrow f(x, y) = \int (y^2 + 1) dx = xy^2 + x + g(y) \) \(\Rightarrow \) we can take \(f(x, y) = xy^2 + x \)

 \(f_y(x, y) = 2xy \) \(\Rightarrow f(x, y) = \int 2xy dy = xy^2 + h(x) \)

 Then \(\nabla f = \langle f_x, f_y \rangle = \langle y^2 + 1, 2xy \rangle = \mathbf{F}. \) By the Fundamental Theorem of Line Integrals,

 \[
 \int_{C_1} \mathbf{F} \cdot d\mathbf{r} = f(\mathbf{r}(1)) - f(\mathbf{r}(0)) = f(2, 0) - f(0, 0)
 \]

 \[
 = (2 \cdot 0^2 + 2) - (0 \cdot 0^2 + 0) = 2
 \]

 c. Knowing that \(\mathbf{F} \) is conservative, so the integral is independent of path, evaluate \(\int_{C_2} \mathbf{F} \cdot d\mathbf{r} \)

 where \(C_2 \) is the simpler curve defined by \(x = t, \ y = 0, \ 0 \leq t \leq 2. \)

 \[
 dx = dt, \ \ dy = 0
 \]

 \[
 \int_{C_2} \mathbf{F} \cdot d\mathbf{r} = \int_0^2 (y^2 + 1) dx + 2xy dy
 \]

 \[
 = \int_0^2 (0^2 + 1) dt + 0 = t \bigg|_0^2 = 2
 \]