1. Let \(z = f(x, y) = e^{2x} \sin 3y \).
 a. Find the total differential \(dz \), that is \(dz = f_x(x, y) \, dx + f_y(x, y) \, dy \).

 \[
 dz = \frac{\partial z}{\partial x} \, dx + \frac{\partial z}{\partial y} \, dy = \left[2e^{2x} \sin 3y \, dx + 3e^{2x} \cos 3y \, dy \right]
 \]

 b. Use \(dz \) to approximate \(\Delta z = f(0.03, 0.04) - f(0, 0) \) by taking \((x, y) = (0, 0) \) and
 \((\Delta x, \Delta y) = (dx, dy) = (0.03, 0.04) \) when \((x, y) = (0, 0) \) and \((dx, dy) = (0.03, 0.04) \).

 \[
 \Delta z = (2e^0 \sin 0.03) \cdot 0.03 + (3e^0 \cos 0.03) \cdot 0.04
 \]

 \[
 = 3(0.04) = 0.12
 \]

 [This approximates \(\Delta z = e^{2(0.03)} \sin 3(0.04) - 0 = 0.1271 \).]

2. The radius of a right circular cylinder is increasing at 6 cm per second, and the height is increasing at 4 cm per second. Use a chain rule to determine the rate of change of the volume when the radius is 12 cm and the height is 36 cm.

 To find: \(\frac{dV}{dt} \), given that \((r, h) = (36 \text{ cm}, 12 \text{ cm}) \) and \(\left(\frac{dr}{dt}, \frac{dh}{dt} \right) = (4 \text{ cm/s}, 6 \text{ cm/s}) \).

 Volume of a cylinder = \(\pi r^2 h \) \(\therefore \)

 \[
 \frac{dV}{dt} = \frac{dV}{dr} \frac{dr}{dt} + \frac{dV}{dh} \frac{dh}{dt} = \pi r^2 \frac{dh}{dt} + 2\pi rh \frac{dr}{dt}
 \]

 \[
 = \pi \left[(12)^2 \cdot 4 + 2 \cdot 12 \cdot 36 \cdot 6 \right] = \pi \left(12^2 \right) \left[4 + 36 \right]
 \]

 \[
 = \boxed{5760 \pi \text{ cm}^3/\text{s}} \approx 18,095.6 \text{ cm}^3/\text{s}
 \]

3. Suppose that \(x = g(y, z) \) is implicitly defined by the equation \(x^3 - 2xy + z^3 + 7y + 6 = 0 \). Find \(\frac{dx}{dy} \) and \(\frac{dx}{dz} \).

 Let \(F(x, y, z) = x^3 - 2xy + z^3 + 7y + 6 \).

 Then \(g_y(y, z) = \frac{\partial x}{\partial y} = -\frac{F_y(x, y, z)}{F_x(x, y, z)} = \boxed{-\frac{-2x + 7}{3x^2 - 2y}} \)

 and \(g_z(y, z) = \frac{\partial x}{\partial z} = -\frac{F_z(x, y, z)}{F_x(x, y, z)} = \boxed{-\frac{3z^2}{3x^2 - 2y}} \)