1. Convert the integral \(\int_0^1 \int_0^{\sqrt{1-x^2}} \int_0^{\sqrt{x^2+y^2}} dz \, dy \, dx \) from rectangular to cylindrical coordinates and evaluate it.

2. Let \(E \) be the cone \(E = \{(x, y, z) : \sqrt{x^2 + y^2} \leq z \leq 4\} \).

a) Use cylindrical coordinates to find the volume, \(V \), of \(E \).

 b) Find \(\bar{z} = \frac{1}{V} \iiint_E z \, dV \), the \(z \)-coordinate of the centroid of \(E \).

3. Use spherical coordinates to find the volume of the solid between the sphere \(x^2 + y^2 + z^2 = 9 \), and the cone \(z = \sqrt{\frac{x^2 + y^2}{3}} \).