Theorems Generalizing the Fundamental Theorem of Calculus

When faced with a line integral $\int_C \mathbf{F} \cdot d\mathbf{r}$, one or more theorems may be applicable, depending on whether *C* is a closed curve, that is, a curve forming the boundary a plane region *R* or a surface *S*; or whether the integrand is "exact," that is, a gradient. The following table summarizes when the various theorems can be applied.

To find	F not	$\mathbf{F} = \nabla f$
$\int_C \mathbf{F} \cdot d\mathbf{r}$	conservative	for some f
C not a	Calculate	Fund. Thm. of
closed curve	directly	line integrals
C a closed	Green's (plane)	0
curve	Stokes' (surface)	0

When faced with a surface integral $\int_{S} \mathbf{F} \cdot \mathbf{n} \, dS$, one or more theorems may be applicable, depending on whether S is a closed surface, that is, a surface forming the boundary a solid region E; or whether the integrand is "exact," that is, a curl. The following table summarizes when the various theorems can be applied.

To find	F ≠ curlG	F = curlG
$\int_{S} \mathbf{F} \cdot \mathbf{n} dS$	for some G	for some G
S is not a	Calculate	Stokes'
closed surface	directly	Theorem
<i>S</i> is boundary	Divergence	0
of solid <i>E</i>	Theorem	0