We are going to have a FUN semester as we journey through our course together in becoming better Citizens of Science!

Molecules like to have fun too—physical FONHc & chemically reactc!

Our intention in this course is to help each other in becoming better “Citizens of Science” while learning organic chemistry. I am excited about that & I hope you are too!!

I’ll be reaching out to you and hope you’ll be reaching out to me to see how we can help each other. Sincerely, DrGergens

My visiting (office) hours are posted on my office door, MS 415F, & I promptly reply to emails having an appropriate subject heading beginning with a course identifier (i.e., CHEM231). My email is dgergens@sdccd.edu. We filter spam emails. An email without an appropriate subject heading is deleted.

IMPORTANT: Multiple methods of teaching and measuring performance and understanding will be given in the form of in- and out-of-classroom course activities (including online) and will include a multimedia project. Blackboard course management software is used in this course to make announcements, coordinate dialogue and discussions, deliver various content and assessment printable hardcopies of course activities to be turned in for grading, and to assess your basic knowledge of the student learning objectives linked to your syllabus for our course—see COR link under Methods of Evaluation (syllabus page 3). A course activity with its directions and guidelines, availability period and due date will be announced in Blackboard under Announcements. Blackboard accounts will become available on the first day school starts or within 24 hours of adding our course.

Please complete E0 (GETTING STARTED), E1, E2 and E3 under Assessments in Blackboard. This is not an option, and unfortunately you will be dropped from our course if you do not complete E0, E1, E2 and E3 assessments by their due date of February 2—see our Performance/Attendance Policy syllabus page 2—so please be mindful of these course activities in our first week together. Directions logging into your Blackboard account is linked at GETTING STARTED—completing Steps 1-8: http://homework.sdmesa.edu/dgergens/getting_started.html

Time Management: For this course, outside-of-classroom (i.e., reading the textbook, homework completion) time will be needed per week as we journey through the lecture schedule of topics (syllabus page 6) and satisfactorily complete course activities relevant to the student learning objectives with intention. Our schedule of topics and due dates will change depending on student need and pace as we adjust instruction to improve student learning, success and performance in mastering the material.

melatonin (3D ball & stick model)
Overview* – What is this course all about ????????

We’ll be on a journey together

- Focusing on becoming better Citizens of Science by
- Learning Organic Chemistry, while
- Going back to ELEMENTary School

*Prior knowledge of 1st year general chemistry is needed for our course.

Is this right Organic Chemistry course for you???

Learn more about transferability for this course, college, and details regarding other course descriptions at http://assist.org and http://www.sdmesa.edu/academics/catalog/

Organic Chemistry I - Chemistry 231: 3 hours/week; 3.0 units

Catalog Course Description: This course is the first semester of a one-year course in organic chemistry. Major themes include, but are not limited to, bonding, molecular structure, isomerism, conformational analysis, nomenclature, reaction mechanisms, and synthesis. Emphasis is placed on the reactions of aliphatic compounds, such as alkanes, cycloalkanes, alkenes, alkynes, alkyl halides, and alcohols. Organic chemistry literature and spectral interpretation using techniques, such as infrared and nuclear magnetic spectroscopies, are introduced to support the above topics. This course is designed for students pursuing a degree in the chemical sciences or training in chemical technology, as well as other transfer students who need organic chemistry as part of preparation for majors, such as molecular biology, premedical, predental, and pharmacy.

Prerequisite: Completion of Chemistry 201 and 201L, each with a grade of "C" or better, or equivalent.

Corequisite: Concurrent enrollment in or completion of: Chemistry 231L with a grade of "C" or better or equivalent.

Advisory: English 101 (Reading and Composition) or English 105 (Composition and Literature) with a grade of "C" or better, or equivalent, or assessment Skill Level R6/W6.

Computer Skills Advisory: Entry level computer skills are expected on types of course activities requiring computer skills. (In most college courses students are expected to have a basic familiarity with computer terms and use: word processing, document manipulation, spreadsheets, email, and online services. These skills can be learned at any of the colleges or Continuing Education.)

Required Textbooks: These resources are on two hour reserve in our library or purchase at our bookstore.

1. McMurry, J. Organic Chemistry and
2. Gergens, D. Chemistry 231- Supplemental Lecture Packet

Generate a required textbook list for this course with current ISBNs at https://www.bookstore.sdccd.edu/mesa/

Additional course materials: Blackboard account; a scientific calculator; 3x5 cards; an email address; printer

**Alternate textbooks are listed at http://homework.sdmesa.edu/dgergens/chem231/alternate_text.htm
Accommodation for Disability: If you are in need of academic accommodations due to a disability, please schedule an appointment with me—and with your DSPS counselor if you have one—during the first two weeks of our course to discuss our options. Student Health Services also provides physical and mental health services having nurse practitioners available daily.

Special Needs: Are you in need of food, clothing, a textbook? I invite you to talk to me & student affairs in letting us know how we together can help in meeting your needs on your pathway toward a successful education at Mesa.

Aloha, Need Help? Are you open to the learning process and helping each other on this journey? If something is not working or if you have any questions, please contact me immediately by email.

- For prompt replies & help, always email me using an appropriate subject heading beginning with: CHEM231 at: dgergens@sdccd.edu
- We filter spam emails. An email without an appropriate subject heading is deleted.

Visiting & Tutoring Hours: Visiting hours are posted on my office door, MS-415F.

I am available so please stop by, or by scheduling an appointment.

- Tutoring Services: Please see page 5 of our syllabus.

Feedback is a Gift. From my perspective, your feedback on what you know, what you don't know, and how to improve our course is very much appreciated. Lack of communication is not an option. So be open, and let me know how it is going as we master the fundamentals of chemistry in our course. Mahalo nui loa. Sincerely, Dr.Gergens

PS – Please be aware of directions, guidelines and course expectations by carefully reading through all resources.

Withdrawing from Our Course: It is your responsibility to withdraw and drop from the course by the published deadlines. It is also helpful to discuss your intentions with me before withdrawing/dropping our course; see page 7 in your syllabus for our classic calendar for important dates and major course events. Please keep in mind, if you are in nonattendance you will be dropped by me.

Performance/Attendance: Key performance indicators show our students making the grade when they are in regular attendance participating in creating a positive course environment. District policy says students in nonattendance are to be dropped from a course. Criteria for being in nonattendance are:

- You do not attend our first course meeting.
- You have two or more missing course activities.
- You have two or more absences in our course (see below for more details).

Absences: Staying in contact with me by email during any absence is very important. During your absence, you are responsible for all missing course content & activities (lectures, announcements, assessments, handouts, work, etc). Absences and missing course activities are considered nonattendance and your limit are two, and missing activities receive zero credit.

There are two types of absences—excused and unexcused.

- Excused absence. Only missing “excused absence” course activities are eligible to be made-up (see below for “procedures for make-ups”). An absence will be marked excused if you provide advance notification by emailing me prior or on the day of your nonattendance.
- Unexcused absence. Course activities missed during an “unexcused absence” cannot be made-up and missing activities receive zero credit. An unexcused absence will be marked as nonattendance for the following reasons:
 A) Not being present during roll call—like when roll is called in your companion laboratory course. Roll call can happen at anytime during our time together.
 B) Not completing a course activity during its availability period and receiving zero credit for that activity.
 C) Truancies—late arrival or early exiting—from our course will be marked as an unexcused absence.

Procedures for Make-ups: We are not obligated in allowing make-ups for missed course activities due to nonattendance. Making-up any missing “excused absence” activity will only be considered if it is appropriate & fair to all in doing so and is within the construct of our lecture schedule and setting. For an “excused absence,” not scheduling a meeting by email on the day of or prior your absence forfeits your possibility in making-up any missing activity. NOTE: I am not obligated to consider other absences as excused and can require you to provide documentation for “excused absences.” Missing activities during an “unexcused absence” cannot be made-up.
Methods of Evaluation:

Your success will be evaluated based on a number of course activities relevant to the student learning objectives in the course outline of record (COR)—see http://homework.sdmesa.edu/dgergens/chem231/COR.html

A course activity with its directions and guidelines, availability period and due date will be announced in Blackboard under Announcements. Our lecture topic schedule (syllabus page 6) and due dates will change depending on student need and pace as we adjust instruction to improve student learning, success and performance in mastering the material. The points earned for each assessment within each course activity category is to be recorded on your grade sheet and counts toward your final Overall Percentage Grade of Achievement. Please place your grade sheet into your portfolio.

<table>
<thead>
<tr>
<th>Course Activity</th>
<th>Percent of Final Grade</th>
<th>Overall Percentage Grade of Achievement Calculation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exercises/Assessments</td>
<td>28%</td>
<td>Weighted percentages (percent of final grade), a grade sheet (page 8), & directions to calculate your overall percentage grade are linked at http://homework.sdmesa.edu/dgergens/grade_directions.html</td>
</tr>
<tr>
<td>Cooperative Learning</td>
<td>6%</td>
<td></td>
</tr>
<tr>
<td>Celebration 1</td>
<td>12%</td>
<td></td>
</tr>
<tr>
<td>Celebration 2 & COP combined</td>
<td>12%</td>
<td></td>
</tr>
<tr>
<td>Celebration 3</td>
<td>12%</td>
<td></td>
</tr>
<tr>
<td>Comprehensive Final</td>
<td>26%</td>
<td></td>
</tr>
<tr>
<td>Nomenclature Exam</td>
<td>4%</td>
<td></td>
</tr>
<tr>
<td>Portfolio & Grade Sheet</td>
<td>4%</td>
<td></td>
</tr>
</tbody>
</table>

Your overall percentage grade will be applied to the grading scale & recorded

\[A \geq 89\% \quad B \geq 77\% \quad C \geq 65\% \quad D \geq 50\% \quad F < 50\% \]

PLEASE NOTE: Blackboard does not calculate your overall grade but will show points earned on assessments. We can schedule a meeting to review your grade. Bringing your portfolio & grade sheet—filled in with grades as described in link above—to our meeting is a must before we can have our discussion regarding your grade calculation.

A warning about turning course activities in late: Be time-on-task. Course activities (i.e., assessment, exercise, etc.) not submitted when asked to do so by their professor or when prompted to do so by Blackboard will be receive a grade reduction; one-percent grade reduction per every one-minute late. Any exercise mailed to me will receive a 10% grade reduction per every day late past the submission and postmark date.

Errors in grading: Errors—hopefully none—can be made in grading. Please email or see me in person to schedule a meeting to discuss the matter if one feels credit is not given where credit is due. I'll be happy to help.

Lecture Schedule of Topics: As we journey through the lecture schedule of topics (syllabus page 6), you are responsible for the content presented, course activities, textbook chapter readings, and the course activity directions and guidelines linked to your Blackboard account and course Home Page.

Course Activities: Multiple methods of teaching and measuring performance and understanding will be given in the form of in- and out-of-classroom course activities (including online) and will include a multimedia project. Blackboard course management software is used in this course to make announcements, coordinate dialogue and discussions, deliver various content and assessment printable hardcopies of course activities to be turned in for grading, and to assess your basic knowledge of the student learning objectives linked to your syllabus for our course—see COR link under Methods of Evaluation. A course activity with its directions and guidelines, availability period and due date will be announced in Blackboard under Announcements. Blackboard accounts will become available on the first day school starts or within 24 hours of adding our course.

College Culture and the Learning Process: The learning process in this course is based on the belief that everyone has the capacity to broaden one’s knowledge and their understanding of methods of gaining knowledge in chemistry and to develop one’s abilities in critical thinking, in oral and written communication, and in mathematics. Experiencing these things and developing an awareness of college culture through the lens of other cultures will be the key to accomplishing our goals successfully. With this in mind, treat our time with respect and intention by adopting incredible elemental steps for incremental success (That’s Incredmental), and by acknowledging your productivity and your classmates with kindness and encouragement with simple positive affirmations—like “I am awesome and we have awesome chemistry”—thus keeping the motivation and momentum which develops our capacity for self-understanding as life long learners. Additional tips and strategies for improving motivation and momentum in our learning process are linked here: http://homework.sdmesa.edu/dgergens/tips/index.html

As we tell stories about the lives of others, we learn how to imagine what another creature might feel in response to various events. At the same time, we identify with the other creature and learn something about ourselves.

Dr. Martha C. Nussbaum
2016 Kyoto Prize Laureate

Knowledge makes a man unfit to be a slave.

Frederick Douglass
Citizens of Science: We are here to help each other in becoming better “Citizens of Science.” Having as our intention “mastering chemistry by working problems and asking questions to ensure a concept is understood,” should have an impact on our performance & achievement, which your overall grade will be based on.

Asking questions from your perspective: Get the benefit of further explanation, or become engaged in an interesting discussion by asking questions from your perspective. When you ask questions you become a participant rather than a spectator in an academic dialogue. **Feedback is a gift,** so ask if you do not understand and when given the opportunity to do so. Since the material presented in this course is cumulative and comprehensive, the questions students ask their instructors and peers provide information about how carefully the students have been listening, possible areas of confusion, and, most importantly, how an instructor might adjust their style of teaching to meet your needs.

Cooperative Learning & Learning Communities: In the “spirit of collaboration,” there will be cooperative learning activities. Be engaged. Active, not passive, learning is essential in this course. Although you are expected to have completed your course activities individually, work together in study groups. During the semester, you will be asked to provide input on a particular topic by working in groups. This will be accomplished by working together doing practice problems, chat sessions, calibrated peer review and/or discussion postings, where you are asked to be involved in your learning community expressing your opinion, having a dialogue and asking questions. Asking questions and by posting your questions to the discussion board—and in the professor’s office—is an important part in making the learning experience more participatory. Also, by kindly responding to your fellow students’ questions, you will be taking a positive cooperative learning approach. If you have a question of a general nature, remember that it is likely your fellow students will also have the same question and all will benefit from a public response. So, post your question to the discussion board. It is also possible some students will be able to answer your question. Participation in these opportunities will become part of your course activity grade. More information will be provided throughout the semester. All questions and postings will be considered as cooperative learning. Keep in mind your question will not be answered immediately by your peers or professor (it can take 24 hours). Therefore, do not wait until the last minute to ask questions. Finally, we all have our own thoughts, opinions, and values which means disagreements can be pretty common, and the art of disagreeing with others differs from one culture to another and person-to-person. So lastly, please keep in mind, we can all agree there can be teachable moments when we can respectfully disagree.

Celebrations and Comprehensive Final:
All celebrations and the comprehensive final will include, but are not limited to, scantron-type questions (multiple choice, matching, true/false), short essay, fill in the blank, and mathematical computation and their availability are listed on pages 6 & 7 of our syllabus.
- Celebrations will cover all content discussed & completed up until the day of the scheduled celebration.
- Our Comprehensive Final will cover all content covered over the entire semester.

Portfolio & Grade Sheet: Keeping a portfolio and grade sheet serves as a progress report, study guide, and proof of completion for this course and **is needed before we can have any discussion regarding your grade calculation.** It consists of a 3-ring binder containing the following:
- Your grade sheet (see syllabus page 8) with points earned for all activities are to be filled in on it.
- Your supplemental packet purchased in our bookstore containing work completed by you.
- All work you completed on your own (nongraded outside-of-course work, like textbook math problems)
- Include your 3x5 flash cards of all mantras and monatomic and polyatomic ions names.
- Any additional handouts provided during the course.

Nomenclature Exam: You will be tested on substance classification, naming elements, monatomic and polyatomic ions, compounds and acids for both inorganic and organic substances, writing their chemical formulas, and functional group classification of selected classes of organic compounds. Additional nomenclature practice is provided in your supplemental packet and textbook for our course.

Special Incentive Project: Additional "bonus" points, up to 2% toward your final grade is available. The special incentive project builds on your prior experience and knowledge and its content should foster diversity, inclusivity, and empowerment from a chemistry perspective, due date on syllabus page 7.

More information is linked here: http://homework.sdmesa.edu/dgergens/incentive/index.html
Academic Policies & Student Services

Academic Policies: Please read through the most recent college catalog for details regarding the following:

Your Behavior in Our Course and Student Code of Conduct: You are expected to respect and obey standards of student conduct while in our course and on the campus. The student Code of Conduct, disciplinary procedure, and student due process (Policy 3100, 3100.1 and 3100.2) can be found in the current college catalog in the section Academic Information and Regulations, and at the office of the Dean of Student Affairs. Charges of misconduct and disciplinary sanctions will be imposed upon students who violate these standards of conduct or provisions of college regulations.

Contentious behavior and the inability to follow directions and/or directives. Contentious behavior and the inability to follow directions and/or directives (i.e., Attendance/Performance Policy, a warning about turning course activities in late, Student Code of Conduct, etc.) during course activities will not be tolerated. If you show contentious behavior toward fellow students and/or me or you are unable to follow directions and/or directives during any given course activity, zero credit will be given for that course activity for contentious behavior and you will be reported to our college administrators.

Academic Honesty Policy: Students' conduct, rights, and responsibilities are governed and supported by District Policy 3100. This policy will be absolutely upheld in this course and is available for review in the Vice President of Student Services and the Dean of Student Affairs offices. Any course activity—lab reports, assessments, homework, etc.—prepared in a manner that is in violation with Policy 3100 will be given zero credit for that course activity and you will be reported to our college administrators.

Add, Drop and Withdrawal Policy: It is your responsibility to add, drop and withdrawal from classes before the deadlines stated in the class schedule. If you stop attending our course and you fail to withdraw by the deadline stated in the class schedule, a final grade must be assigned to you.

Eating, Smoking, Vaping, Drinking is not permitted in the laboratory.

Audio & Video Recording of My Lectures is not permitted in our course and laboratory unless 1) you are given my permission to do so and 2) you agree to providing me with the audio and video recording along with its written transcript as email attachments by the end of the day on the day it was recorded so I might be able to share it with our learning community. I would be happy to teach you how to transcribe files containing audio if you do not know how to do this.

Student Services Special, DSPS, Veterans Affairs & Additional Tutoring Services:
Get the most out of college http://homework.sdmesa.edu/dgergens/student_services.html

Scholarships & Financial Support: http://homework.sdmesa.edu/dgergens/scholarships.html

Library Resources & Services - San Diego Mesa College LRC:
Hours of operation are listed in Schedule of Classes; 619-388-2695. http://www.sdmesa.edu/library/

Free Supervised Tutoring Help: Go to the Mesa Tutoring Computing Center (MTC2) http://www.sdmesa.edu/academics/academic-support-programs/tutoring/

Blackboard Help: http://homework.sdmesa.edu/dgergens/index2.html

Course Home Page: Other resources relevant to our course can be found at the link below:
http://homework.sdmesa.edu/dgergens/chem231/index.html

This syllabus is intended to help you plan your work in our course. It is subject to change at any time by the professor should a change be in the best interest of our course. If your withdraw and/or are in nonattendance, you will have your materials immediately discarded unless you contact me explaining your circumstances. All other student materials will be discarded one month after their grade is posted.
<table>
<thead>
<tr>
<th>Week</th>
<th>TOPIC</th>
</tr>
</thead>
</table>
| 1. Jan. 29 | CH 1 & 2 Nuclear Isotopes & Reactions, Atomic Structure & Electron Configurations
CH 1 & 2 Isomers, Empirical and Molecular Formulas, Organic versus Inorganic Chemistry
CH 1 & 2 Introductions, Lewis Structure & Bonding, Calculating Formal Charge and Resonance |
| 2. Feb. 5 | Celebration 1 – All Content Presented in Week 1 (see topics above)
CH 1 & 2 Valence Bond, Atomic Hybridization, and Molecular Orbital Chemical Bonding Theories
Feb. 8 | LAST DAY TO WITHDRAW WITHOUT A "W" ON STUDENT'S TRANSCRIPT |
| 3. Feb. 15 | HOLIDAY |
| 4. Feb. 18 | HOLIDAY
CH 2 Lewis Acids/Bases Theory
CH 3 Organic Compounds: Common Alkyl, Alkane Nomenclature & Functional Groups
CH 3 Physical Properties and Intermolecular Forces
CH 4 Cycloalkanes - Newman Projections & Conformational Analysis; Chair Conformations
CH 4 Conformational Analysis of Mono- and Disubstituted Cycloalkanes; Bicyclics
Mar. 4 | LAST DAY TO APPLY FOR Pass/No Pass grade option (Credit/No Credit) |
| 5. CH 5 Stereochemistry - Chirality and Optical Activity, Absolute & Relative Configurations
CH 5 Fischer Projections, Diastereomers, Meso Compounds, & Stereochemistry of Reactions
CH 6 An Overview of Kinds of Organic Reactions - Addition, Elimination, Substitution, Acid-Base
CH 6 Gibbs Free Energy $\Delta G = \Delta H - T \Delta S$ & Equilibrium; Thermodynamics vs Kinetics
CH 6 Describing a Reaction - Energy Changes, Equilibria, Rates, and Energy Diagrams
CH 7 Alkenes: Naming, Physical Properties, Structure, E & Z Geometric isomerism |
| 7. CH 7 Alkene Stability, Heats of Hydrogenation & extra: General Methods for Alkene Synthesis
CH 7 Rates of Multistep Reactions, Hammond Postulate, Mechanisms, & Carbocation Stability
8. CH 8 Electrophilic Additions, Mechanisms and Reactions & extra Radical Additions
CH 8 Hydration, Oxy- & Alkoxymercuration and Hydroboration
CH 8 Alkenes: Carbene Addition, Oxidative Additions, and Oxidative Cleavage
Mar. 21 | COP Out of Class Takehome Portion of COP available and is DUE April 2 |
| 9. Mar. 25 | Spring Break |
| 10. April 2 | COP Takehome Portion DUE
April 4 | Celebration 2 Chapters 1 - 6 (use your COP answer key as your study guide for Celebration 2) |
CH 9 Alkynes: Hydroboration, Oxidation, Ozonolysis, Planning Organic Syntheses
CH 9 Alkynes: Acetylide as a Nucleophile & Strong Base - Substitution S_N2 versus Elimination $E2$
April 12 | LAST DAY TO WITHDRAW WITH A "W" ON STUDENT'S TRANSCRIPT |
| 12. CH 10 Alkyl Halides: Physical Properties & Preparation by Radical Halogenation
CH 10 Alkyl Halides from Alcohols and Preparation and Use of Organometallic Reagents
CH 11 Nucleophilic Substitution: Details of the S_N1 & S_N2 Reactions
Apr. 25 | Celebration 3 Chapters 7 - 11 & Synthesis |
| 13. | CH 11 Synthesis of Alkenes by Elimination - $E1$ versus $E2$ Reactions; Saytzeff Rule
CH 11 Substitution versus Elimination Reactivity & Synthesis and Review
15. May 7 | XTR Credit due
CH 17 Alcohols: Naming, Structure, Physical Properties, Stability, & Synthesis
CH 17 Alcohols: Reduction of the Carbonyl Group & Grignard Preparation of Alcohols
CH 17 Alcohols: Dehydration, and Conversions to Alkyl Halides (Lucas, PBr$_3$, PBr$_3$, SOCl$_2$)
CH 17 Alcohols: Oxidation, Tosyl Esters, and Protecting Groups
17. May 21 | Comprehensive FINAL
May 23 | NOMENCLATURE EXAM |
Organic Chemistry I - Calendar

January

<table>
<thead>
<tr>
<th>WEEK</th>
<th>Sun</th>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
<th>Sat</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>13</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
</tr>
<tr>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
<td>31</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

March

<table>
<thead>
<tr>
<th>WEEK</th>
<th>Sun</th>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
<th>Sat</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
</tr>
<tr>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
<td>31</td>
</tr>
</tbody>
</table>

April

<table>
<thead>
<tr>
<th>WEEK</th>
<th>Sun</th>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
<th>Sat</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>12</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
</tr>
<tr>
<td>13</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td></td>
<td>26</td>
</tr>
<tr>
<td>28</td>
<td>29</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

May

<table>
<thead>
<tr>
<th>WEEK</th>
<th>Sun</th>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
<th>Sat</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>15</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>16</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
</tr>
<tr>
<td>17</td>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
</tr>
<tr>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
<td>31</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend:

C1 = Celebration 1
C2 = Celebration 2
C3 = Celebration 3
F = Final
NE = Nomenclature Exam
XTR = Incentive Project due, see syllabus page 7
NS = Holiday

Dp1 = February 8 - Last day to receive and process an add code issued by the instructor. Last day to process and pay for add codes. Deadline to drop classes with no "W" recorded.

Dp2 = April 12 - Withdrawal deadline. No drops accepted after this date.

PNP = March 4 - Last day to apply for Pass/No Pass grade option (Credit-No Credit)
Name: ___________________________ Your Summary (course activities) CHEM231 Spring 2019 - CRN 47473

- Record your scores on this grade sheet to be turned in and graded as part of your portfolio.

<table>
<thead>
<tr>
<th>Course Activity</th>
<th>your score</th>
<th>possible pts</th>
<th>total possible pts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exercises (E) (28%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Getting Started E0</td>
<td>25</td>
<td></td>
<td>25</td>
</tr>
<tr>
<td>Syllabus quiz E1</td>
<td>25</td>
<td></td>
<td>25</td>
</tr>
<tr>
<td>Nuclear & Atomic Theories E2</td>
<td>35</td>
<td></td>
<td>35</td>
</tr>
<tr>
<td>Structure & Bonding</td>
<td>35</td>
<td></td>
<td>35</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

E's score subtotal + = _______ x 0.28 = _______

Cooperactive Learning (CL) (6%)
- CL1
- CL2
- CL3
- CL4
- CL5
- CL6

CL's score subtotal + = _______ x 0.06 = _______

Celebration 1 (C1) (12%) + = _______ x 0.12 = _______

Celebration 2 & COP (C2) (12%)
- MO
- WO
- MI
- WI

subtotal + = _______ x 0.12 = _______

Celebration 3 (C3) (12%) + = _______ x 0.12 = _______

Final (F) (26%) + = _______ x 0.26 = _______

Nomenclature Exam (NE) (4%) + = _______ x 0.04 = _______

Incentive Project (XTR) points 0 + 20 = _______ 0.02 = _______

pt total final grade percent

Portfolio & Grade Sheet are needed when discussing grades (see syllabus page 2)