1. Solve the system using the Elimination Method:
 \[4x + 2y + 4z = 14\]
 \[2x - y + z = 4\]
 \[3x + 2y - 3z = 5\]

2. Solve the system using Substitution:
 \[2x - 4y = 7\]
 \[3x - y = 10\]
 (ugly answer)

3. Solve the system using Elimination:
 \[3x + 2y = 11\]
 \[4x - 3y = 9\]
4. Solve the system using Cramer's Rule:
 \[7x + 2y = 9\]
 \[3x - 4y = 10\]
 (ugly answer)

5. Solve the system using Cramer's Rule:
 \[7x + 2y - z = 10\]
 \[3x - y + z = 4\]
 \[5x + y + z = 8\]

6. Solve the system using Gaussian Elimination:
 \[2x - 3y = 7\]
 \[x + 2y = 0\]
7. Solve the system using Gaussian Elimination:
 \[3x - 4y = 8\]
 \[6x + y = 25\]

8. Solve the system using Gaussian Elimination:
 \[x + 2y + z = 6\]
 \[x - y + 3z = 2\]
 \[2x + y - z = 3\]
9. Solve the system using Gaussian Elimination:

\[x + 2y + z = 7 \]
\[2x - 2y + 3z = 10 \]
\[2x + y - z = 5 \]
10. Cody's boat took 3 hours to make a trip downstream with a 6-mph current. The return trip against the same current took 5 hours. Find the speed of the boat in still water.

11. Two cars leave Salt Lake City, traveling in opposite directions. One car travels at a speed of 80 km/hr and the other at 96 km/hr. In how many hours will they be 528 km apart?